A cross-scenario and cross-subject domain adaptation method for driving fatigue detection

计算机科学 域适应 适应(眼睛) 脑电图 人工智能 领域(数学分析) 交叉验证 机器学习 心理学 数学 数学分析 分类器(UML) 神经科学 精神科
作者
Yun Luo,Wei Liu,Hanqi Li,Yong Lu,Bao‐Liang Lu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (4): 046004-046004
标识
DOI:10.1088/1741-2552/ad546d
摘要

Abstract Objective. The scarcity of electroencephalogram (EEG) data, coupled with individual and scenario variations, leads to considerable challenges in real-world EEG-based driver fatigue detection. We propose a domain adaptation method that utilizes EEG data collected from a laboratory to supplement real-world EEG data and constructs a cross-scenario and cross-subject driver fatigue detection model for real-world scenarios. Approach. First, we collect EEG data from subjects participating in a driving experiment conducted in both laboratory and real-world scenarios. To address the issue of data scarcity, we build a real-world fatigued driving detection model by integrating the real-world data with the laboratory data. Then, we propose a method named cross-scenario and cross-subject domain adaptation (CS2DA), which aims to eliminate the domain shift problem caused by individual variances and scenario differences. Adversarial learning is adopted to extract the common features observed across different subjects within the same scenario. The multikernel maximum mean discrepancy (MK-MMD) method is applied to further minimize scenario differences. Additionally, we propose a conditional MK-MMD constraint to better utilize label information. Finally, we use seven rules to fuse the predicted labels. Main results. We evaluate the CS2DA method through extensive experiments conducted on the two EEG datasets created in this work: the SEED-VLA and the SEED-VRW datasets. Different domain adaptation methods are used to construct a real-world fatigued driving detection model using data from laboratory and real-world scenarios, as well as a combination of both. Our findings show that the proposed CS2DA method outperforms the existing traditional and adversarial learning-based domain adaptation approaches. We also find that combining data from both laboratory and real-world scenarios improves the performance of the model. Significance. This study contributes two EEG-based fatigue driving datasets and demonstrates that the proposed CS2DA method can effectively enhance the performance of a real-world fatigued driving detection model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
李健应助王乐采纳,获得10
1秒前
CCC完成签到,获得积分10
2秒前
强健的绮琴完成签到,获得积分10
2秒前
美人骨发布了新的文献求助10
2秒前
3秒前
4秒前
小火车完成签到,获得积分10
5秒前
5秒前
Akim应助Z赵采纳,获得10
5秒前
科研通AI6应助等待的松鼠采纳,获得10
6秒前
tudouning发布了新的文献求助10
6秒前
7秒前
英姑应助钢笔采纳,获得10
7秒前
7秒前
大渣饼完成签到 ,获得积分10
7秒前
jszz应助我喜欢下雪采纳,获得10
8秒前
小马甲应助劈里啪啦采纳,获得10
8秒前
SSY发布了新的文献求助10
8秒前
黄阔方完成签到,获得积分10
8秒前
10秒前
law9036发布了新的文献求助10
10秒前
lsd发布了新的文献求助10
11秒前
wen完成签到,获得积分10
11秒前
王乐完成签到,获得积分20
11秒前
Jasper应助xy采纳,获得10
12秒前
钢笔完成签到,获得积分10
13秒前
13秒前
鑫鑫子完成签到,获得积分20
14秒前
yunyii发布了新的文献求助10
14秒前
14秒前
充电宝应助斑鸠津采纳,获得10
15秒前
王乐发布了新的文献求助10
15秒前
沉默白亦完成签到,获得积分10
15秒前
加菲丰丰应助清澈的湖采纳,获得10
16秒前
17秒前
赵星言完成签到,获得积分10
18秒前
天天快乐应助moon123采纳,获得10
18秒前
钢笔发布了新的文献求助10
19秒前
Z赵发布了新的文献求助10
20秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4292657
求助须知:如何正确求助?哪些是违规求助? 3819296
关于积分的说明 11959530
捐赠科研通 3462753
什么是DOI,文献DOI怎么找? 1899398
邀请新用户注册赠送积分活动 947664
科研通“疑难数据库(出版商)”最低求助积分说明 850392