Improving Wheat Leaf Disease Classification: Evaluating Augmentation Strategies and CNN-Based Models With Limited Dataset

计算机科学 分类器(UML) 混淆矩阵 人工智能 混乱 机器学习 随机森林 上下文图像分类 粮食安全 鉴定(生物学) 模式识别(心理学) 图像(数学) 农业 精神分析 生物 植物 生态学 心理学
作者
Syed Taha Yeasin Ramadan,Tanjim Sakib,Fahmid Al Farid,Md Shofiqul Islam,Junaidi Abdullah,Md Roman Bhuiyan,Sarina Mansor,Hezerul Abdul Karim
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 69853-69874 被引量:1
标识
DOI:10.1109/access.2024.3397570
摘要

Global food security is seriously threatened by wheat leaf disease, which makes effective and precise disease detection and classification techniques necessary. For efficient disease control and the best possible crop health, timely identification and precise classification are essential. However, the limited availability of datasets for wheat leaf diseases hinders the development of effective and robust classification models. This research emphasizes the importance of precise wheat leaf disease diagnosis for global food security. The existing methods face challenges with limited data and computational demands. The research explores the potential of deep learning for automated disease detection, considering these challenges. CycleGAN proved to be the most effective among various augmentation techniques, enhancing the performance of classifiers DenseNet121, ResNet50V2, DenseNet169, Xception, ResNet152V2, and MobileNetV2. ADASYN also significantly improved classification accuracy, with MobileNetV2 consistently outperforming across different augmentation methods. This technique excels in overcoming challenges posed by limited datasets and class imbalances. Using CycleGAN for data augmentation notably enhanced classifier performance, addressing the scarcity of real-world samples. Evaluation through confusion matrix analysis revealed a minimal number of misclassified images—possibly as low as 0 to 3 images over the test dataset. The exceptional 100% accuracy achieved by the MobileNetV2 model on both CycleGAN and ADASYN augmented datasets highlights the potential of these techniques to unlock new levels of accuracy in wheat disease classification. This augmentation technique fine-tuned the classifier, reducing errors and highlighting the crucial role of CycleGAN in enhancing the accuracy and precision of wheat disease classification models. The proposed method establishes CycleGAN's effectiveness in augmenting wheat leaf disease classification and recognizes ADASYN's potential. The developed technique shows promise for automated disease detection in agriculture, enhancing global food security. Future research may optimize computational efficiency and explore integrating emerging technologies such as edge computing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈迎南发布了新的文献求助30
刚刚
1秒前
emnjkl发布了新的文献求助10
2秒前
神勇的老五完成签到 ,获得积分10
3秒前
Catfish完成签到,获得积分10
3秒前
4秒前
硕shuo发布了新的文献求助20
4秒前
科研通AI5应助zhukun采纳,获得10
4秒前
自信的冬日完成签到,获得积分10
7秒前
咖啡先生完成签到,获得积分10
9秒前
11秒前
科研木头人完成签到 ,获得积分10
14秒前
江江江江江江江江完成签到,获得积分10
15秒前
zhukun发布了新的文献求助10
17秒前
夕诙应助emnjkl采纳,获得10
19秒前
祥瑞完成签到,获得积分10
20秒前
qiao应助默默采纳,获得10
23秒前
祝好发布了新的文献求助20
29秒前
emnjkl完成签到,获得积分20
33秒前
冷傲雍完成签到,获得积分20
33秒前
芭娜55完成签到 ,获得积分10
37秒前
38秒前
39秒前
热心的百川完成签到 ,获得积分20
41秒前
丰富又亦完成签到,获得积分10
43秒前
Bblythe完成签到 ,获得积分10
43秒前
45秒前
Akim应助奔波儿灞采纳,获得10
46秒前
NexusExplorer应助硕shuo采纳,获得10
47秒前
AA发布了新的文献求助10
49秒前
july完成签到 ,获得积分10
50秒前
52秒前
丰富又亦发布了新的文献求助10
52秒前
奔波儿灞完成签到,获得积分20
55秒前
58秒前
lant0ng完成签到 ,获得积分10
58秒前
GH发布了新的文献求助10
1分钟前
1分钟前
泡泡完成签到 ,获得积分10
1分钟前
pluto应助木木三采纳,获得20
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776730
求助须知:如何正确求助?哪些是违规求助? 3322167
关于积分的说明 10208975
捐赠科研通 3037401
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797622
科研通“疑难数据库(出版商)”最低求助积分说明 757921