糖尿病
离子运输机
离子通道
生物
疾病
代谢综合征
化学
生物物理学
医学
内分泌学
细胞生物学
生物信息学
内科学
生物化学
膜
受体
标识
DOI:10.1016/bs.ctm.2022.09.006
摘要
Cardiovascular disease is on the rise, partially due to the continued increase in metabolic syndrome. Advances in basic research on vascular ion transport have the potential to provide targets for therapeutic interventions. Vascular specificity, which includes different vascular beds having different characteristics and the macro- vs. microvasculature, is a vitally important variable in characterization of ion transport. At the cellular level, targeted fluorescent biosensors for Ca2+, super-resolution microscopy, and organelle patch clamp electrophysiology enable more detailed studies. The "MetS/diabetes milieu" includes increased and decreased insulin, and increased glucose, increased LDL/HDL cholesterol and triglycerides, and increased blood pressure. The duration and severity of MetS/diabetes components certainly affect the vascular phenotype and ion transport and membrane interactions. A combination of in vivo animal models and in vitro cell models to study ion transport in MetS/diabetes conditions is optimal. Gene editing and selective pharmacological tools should be used after or in conjunction with characterization of ion transport in vascular health and disease phenotypes. This is critical to determining the causal role of Ca2+ signaling in modulation of vascular phenotype. The ion transport and membrane interactions that are measured are typically only a snapshot in time in these dynamic processes occurring over the progression of health and disease. It is imperative that this concept be considered in the planning of long-term studies of vascular disease, ion transport experiments, and interpretation of the data. Future directions for our contributors' research will advance the field.
科研通智能强力驱动
Strongly Powered by AbleSci AI