Predicting and Explaining Cognitive Load, Attention, and Working Memory in Virtual Multitasking

人类多任务处理 计算机科学 认知负荷 工作记忆 认知 认知心理学 可视化 人机交互 虚拟现实 人工智能 心理学 神经科学
作者
Jyotirmay Nag Setu,Joshua M Le,Ripan Kumar Kundu,B. Giesbrecht,Tobias Höllerer,Khaza Anuarul Hoque,Kevin Desai,John Quarles
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tvcg.2025.3549850
摘要

As VR technology advances, the demand for multitasking within virtual environments escalates. Negotiating multiple tasks within the immersive virtual setting presents cognitive challenges, where users experience difficulty executing multiple concurrent tasks. This phenomenon highlights the importance of cognitive functions like attention and working memory, which are vital for navigating intricate virtual environments effectively. In addition to attention and working memory, assessing the extent of physical and mental strain induced by the virtual environment and the concurrent tasks performed by the participant is key. While previous research has focused on investigating factors influencing attention and working memory in virtual reality, more comprehensive approaches addressing the prediction of physical and mental strain alongside these cognitive aspects remain. This gap inspired our investigation, where we utilized an open dataset - VRWalking, which included eye and head tracking and physiological measures like heart rate(HR) and galvanic skin response(GSR). The VRwalking dataset has timestamped labeled data for physical and mental load, working memory, and attention metrics. In our investigation, we employed straightforward deep learning models to predict these labels, achieving noteworthy performance with 91%, 96%, 93%, and 91% accuracy in predicting physical load, mental load, working memory, and attention, respectively. Additionally, we conducted SHAP (SHapley Additive exPlanations) analysis to identify the most critical features driving these predictions. Our findings contribute to understanding the overall cognitive state of a participant and effective data collection practices for future researchers, as well as provide insights for virtual reality developers. Developers can utilize these predictive approaches to adaptively optimize user experience in real-time and minimize cognitive strain, ultimately enhancing the effectiveness and usability of virtual reality applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助坚定的半鬼采纳,获得20
1秒前
1秒前
2秒前
科研通AI5应助MADKAI采纳,获得10
3秒前
科研狗完成签到,获得积分10
3秒前
科研通AI5应助MADKAI采纳,获得10
3秒前
领导范儿应助MADKAI采纳,获得10
3秒前
爆米花应助MADKAI采纳,获得10
3秒前
所所应助MADKAI采纳,获得10
3秒前
传奇3应助MADKAI采纳,获得10
3秒前
华仔应助MADKAI采纳,获得10
3秒前
李健应助MADKAI采纳,获得10
3秒前
4秒前
5秒前
addestay发布了新的文献求助10
5秒前
科研狗发布了新的文献求助10
6秒前
希望天下0贩的0应助wanli445采纳,获得10
6秒前
7秒前
受伤幻桃发布了新的文献求助10
7秒前
情怀应助小松鼠采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
小二郎应助nice1334采纳,获得10
9秒前
科研通AI2S应助ssss采纳,获得10
10秒前
司空以蕊发布了新的文献求助10
10秒前
CodeCraft应助iu采纳,获得10
10秒前
顺利毕业耶耶耶完成签到,获得积分10
10秒前
烟花应助鱼跃采纳,获得10
11秒前
科研通AI2S应助addestay采纳,获得10
12秒前
章鱼发布了新的文献求助30
13秒前
Enso完成签到 ,获得积分10
14秒前
小翁发布了新的文献求助10
14秒前
15秒前
000发布了新的文献求助10
15秒前
顾矜应助科研小崩豆采纳,获得30
15秒前
愉快洋葱完成签到,获得积分10
16秒前
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787674
求助须知:如何正确求助?哪些是违规求助? 3333313
关于积分的说明 10261091
捐赠科研通 3048951
什么是DOI,文献DOI怎么找? 1673366
邀请新用户注册赠送积分活动 801847
科研通“疑难数据库(出版商)”最低求助积分说明 760369