Development and Validation of Models for Preoperative Prediction of Risk and Postoperative Detection of Non-Infectious Complications Using Interpretable Machine Learning and Electronic Health Record Data

医学 接收机工作特性 医学诊断 急诊医学 外科 重症监护医学 内科学 放射科
作者
Adam R. Dyas,Christina M. Stuart,Yizhou Fei,Robert A. Meguid,Yaxu Zhuang,William G. Henderson,Michael R. Bronsert,Kathryn Colborn
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
标识
DOI:10.1097/sla.0000000000006709
摘要

Objective: To apply interpretable machine learning methodology to electronic health record (EHR) data to develop models for preoperative risk estimation and postoperative detection of non-infectious postoperative complications. Summary Background Data: We previously developed preoperative risk and postoperative detection models for surveillance of postoperative infections. The purpose of the present study was to develop and validate similar models for the non-infectious complications of the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP). Methods: Preoperative and postoperative EHR data from five hospitals across one healthcare system (University of Colorado Health), 2013-2019, including diagnoses, procedures, operative variables, patient characteristics, and medications were obtained. Lasso and the knockoff filter were used to perform controlled variable selection to develop preoperative risk models and postoperative detection models of 30-day non-infectious outcomes of mortality, overall morbidity, bleeding, cardiac, pulmonary, renal, and venous thromboembolism morbidity, non-home discharge, and unplanned readmission. Results: Among 30,639 patients included, postoperative complication rates for each outcome ranged from 0.1% (stroke) to 10.4% (overall morbidity). Area under the receiver operating characteristic curve for preoperative risk models ranged from 0.68-0.91 and from 0.92-0.97 for postoperative detection models. Between 6-22 predictor variables were included in each model. Conclusions: We developed parsimonious models for estimating risk of and detection of postoperative non-infectious complications. Our models showed good to excellent performance suggesting that these models could be used to augment manual surveillance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助等下采纳,获得10
1秒前
科研通AI5应助端庄洪纲采纳,获得10
2秒前
那当然发布了新的文献求助10
2秒前
3秒前
4秒前
邓邵斌发布了新的文献求助10
6秒前
6秒前
LHL发布了新的文献求助10
7秒前
枯草发布了新的文献求助10
9秒前
guo完成签到,获得积分0
21秒前
24秒前
27秒前
叶95发布了新的文献求助10
29秒前
墨墨发布了新的文献求助10
32秒前
34秒前
34秒前
Yang发布了新的文献求助10
39秒前
陈梦鼠发布了新的文献求助10
40秒前
xibei完成签到 ,获得积分10
42秒前
妮儿发布了新的文献求助20
43秒前
纯真路灯完成签到,获得积分10
43秒前
彳亍完成签到 ,获得积分10
46秒前
47秒前
科研通AI2S应助星星采纳,获得10
48秒前
苹果南烟完成签到,获得积分10
49秒前
陈梦鼠完成签到,获得积分10
51秒前
等下发布了新的文献求助10
53秒前
bkagyin应助大力采纳,获得10
57秒前
Akim应助科研通管家采纳,获得10
57秒前
我是老大应助科研通管家采纳,获得10
57秒前
57秒前
上官若男应助科研通管家采纳,获得10
57秒前
大个应助科研通管家采纳,获得10
58秒前
科研通AI5应助科研通管家采纳,获得20
58秒前
思源应助科研通管家采纳,获得10
58秒前
58秒前
桐桐应助科研通管家采纳,获得10
58秒前
脑洞疼应助科研通管家采纳,获得10
58秒前
顾矜应助科研通管家采纳,获得10
58秒前
隐形曼青应助科研通管家采纳,获得10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777289
求助须知:如何正确求助?哪些是违规求助? 3322579
关于积分的说明 10210765
捐赠科研通 3037943
什么是DOI,文献DOI怎么找? 1666984
邀请新用户注册赠送积分活动 797884
科研通“疑难数据库(出版商)”最低求助积分说明 758061