Z-Number Generation Model and Its Application in a Rule-Based Classification System

计算机科学 数学 自然语言处理
作者
Yangxue Li,Juan Antonio Morente-Molinera,José Ramón Trillo,Enrique Herrera‐Viedma
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-
标识
DOI:10.1109/tcyb.2025.3545195
摘要

Due to their unique structure and powerful capability to handle uncertainty and partial reliability of information, Z-numbers have achieved significant success in various fields. Zadeh previously asserted that a Z-number can be regarded as a summary of probability distributions. Researchers have proposed various methods for determining the underlying probability distributions from a given Z-number. Conversely, can a Z-number be used to summarize a set of probability distributions? This problem remains unexplored. In this article, we propose a nonlinear model, termed Maximum Expected Minimum Entropy (MEME), for generating a Z-number from a set of probability distributions. Through this model, Z-numbers can be generated directly from data without requiring expert knowledge. Additionally, we applied the MEME model to classification problems, introducing a novel if-then rule form, termed Z-valuation if-then rules. These rules replace the deterministic consequent part of a fuzzy rule with an uncertain Z-valuation, thereby further summarizing the uncertain information in the rule's consequent. Based on the Z-valuation rules, we propose a Z-valuation rule-based (ZVRB) classification system, which aims to enhance decision-making processes in scenarios where uncertainty plays a key role. To validate the effectiveness of the ZVRB classification system, we conducted two experiments comparing it with both classic and advanced nonfuzzy classifiers as well as fuzzy classification systems. The results show that the ZVRB model is superior to the other comparative classifiers in terms of classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
汉堡包应助小太阳采纳,获得10
2秒前
6秒前
陈辉发布了新的文献求助10
6秒前
余松林完成签到,获得积分10
8秒前
10秒前
fashion完成签到 ,获得积分10
11秒前
keyanzhai完成签到,获得积分10
12秒前
偷乐发布了新的文献求助10
12秒前
bkagyin应助温伊采纳,获得10
13秒前
14秒前
小太阳完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助30
20秒前
21秒前
SYLH应助45321采纳,获得10
23秒前
小洁完成签到 ,获得积分10
24秒前
张承发布了新的文献求助10
26秒前
coolkid应助科研通管家采纳,获得10
26秒前
英姑应助科研通管家采纳,获得10
26秒前
26秒前
SYLH应助科研通管家采纳,获得30
27秒前
Jasper应助科研通管家采纳,获得10
27秒前
27秒前
冰魂应助科研通管家采纳,获得30
27秒前
CipherSage应助科研通管家采纳,获得10
27秒前
大模型应助科研通管家采纳,获得30
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
coolkid应助科研通管家采纳,获得20
27秒前
科目三应助科研通管家采纳,获得10
28秒前
SYLH应助科研通管家采纳,获得10
28秒前
打打应助科研通管家采纳,获得10
28秒前
SYLH应助科研通管家采纳,获得10
28秒前
天天快乐应助科研通管家采纳,获得10
28秒前
苗条雁菱应助科研通管家采纳,获得10
28秒前
SYLH应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
SYLH应助科研通管家采纳,获得10
28秒前
NexusExplorer应助科研通管家采纳,获得10
28秒前
28秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864572
求助须知:如何正确求助?哪些是违规求助? 3406953
关于积分的说明 10652006
捐赠科研通 3130932
什么是DOI,文献DOI怎么找? 1726685
邀请新用户注册赠送积分活动 831940
科研通“疑难数据库(出版商)”最低求助积分说明 780064