Deciphering the role of pyroptosis-related genes and natural killer T cells in sepsis pathogenesis: a comprehensive bioinformatics and Mendelian randomization analysis.

上睑下垂 孟德尔随机化 发病机制 基因 生物 败血症 生物信息学 孟德尔遗传 计算生物学 免疫学 遗传学 医学 程序性细胞死亡 遗传变异 细胞凋亡 基因型
作者
Lingyun Zhou,Wei Dong,Yi Liu
出处
期刊:PubMed 卷期号:76 (2)
标识
DOI:10.26402/jpp.2025.2.10
摘要

Pyroptosis is increasingly recognized as crucial in sepsis development, but the specific roles of pyroptosis-related genes (PRGs) in sepsis remain underexplored. Gene expression profiles of sepsis and control samples were retrieved from the Gene Expression Omnibus (GEO) database for analysis (GSE57065, GSE95233). Differentially expressed genes (DEGs) were identified, followed by functional enrichment analysis. Weighted gene co-expression network analysis (WGCNA) was employed to identify genes associated with sepsis, with intersecting DEGs and PRGs highlighted via Venn diagrams. Hub genes were further analyzed across both the training and validation datasets (GSE65682) for differential expression, receiver operating characteristic (ROC) analysis, correlation analysis, and Kaplan-Meier (KM) survival analysis. Immune cell infiltration was evaluated in both datasets using the single-sample gene set enrichment analysis (ssGSEA) algorithm. Machine learning approaches were applied to identify critical immune cell types involved in sepsis regulation, which were subsequently correlated with the hub genes. Single-cell RNA sequencing (scRNA-seq) analysis of sepsis samples was conducted using the GSE167363 dataset. Finally, Mendelian randomization (MR) was utilized to investigate causal relationships between exposures and outcomes. In results eight hub PRGs were identified, including NLRC4, PLCG1, TP53, AIM2, GZMB, GZMA, ELANE, and CASP5. Functional enrichment analysis implicated dysregulated immune responses in sepsis progression, aligning with established pathophysiological mechanisms. These eight key genes exhibited consistent expression patterns. Several genes (NLRC4, PLCG1, AIM2, GZMB, and ELANE) emerged as promising diagnostic biomarkers (AUC>0.85). Machine learning revealed that 15 immune cell types may play important roles in sepsis. Correlation analysis indicated a positive relationship between granzyme B (GZMB) and natural killer T (NKT) cells, a finding further corroborated by scRNA-seq analysis. In the validation cohort, GZMB and ELANE were linked to patient prognosis (p<0.05). MR analysis using the inverse variance weighting (IVW) method demonstrated a positive causal relationship between GZMB and NKT cells (OR=1.063, 95% CI=1.013-1.115, p=0.013). Moreover, elevated NKT cell levels were associated with a reduced risk of sepsis (OR=0.977, 95% CI=0.955-1.000, p=0.046), and NKT cells served as protective factors for 28-day mortality in sepsis (OR=0.938, 95% CI=0.881-0.997, p=0.040). This study provides a comprehensive analysis of the roles of PRGs and NKT cells in sepsis, offering valuable insights for diagnostic and therapeutic approaches in sepsis immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助第一个相遇采纳,获得10
1秒前
1秒前
林g完成签到,获得积分10
1秒前
1秒前
匹诺曹发布了新的文献求助10
2秒前
2秒前
珷玞完成签到,获得积分10
2秒前
qhg发布了新的文献求助10
2秒前
小学渣发布了新的文献求助10
3秒前
烟花应助han采纳,获得10
4秒前
Tracy完成签到,获得积分10
5秒前
Roachw完成签到,获得积分10
5秒前
qwq发布了新的文献求助10
5秒前
6秒前
YJ888发布了新的文献求助10
7秒前
李嘉诚完成签到,获得积分10
7秒前
22222发布了新的文献求助30
7秒前
8秒前
Owen应助冰冰大王采纳,获得10
8秒前
脑洞疼应助凶狠的小鸽子采纳,获得10
9秒前
hhh完成签到,获得积分10
9秒前
10秒前
英姑应助qhg采纳,获得10
10秒前
Orange应助qwq采纳,获得10
10秒前
Orange应助欢乐采纳,获得10
11秒前
1997发布了新的文献求助10
12秒前
甜蜜水蜜桃完成签到 ,获得积分10
12秒前
天下无双发布了新的文献求助10
13秒前
汉堡包应助YJ888采纳,获得10
13秒前
小小米发布了新的文献求助10
13秒前
Zerolii发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
16秒前
在水一方应助愉快的宛海采纳,获得10
16秒前
18秒前
19秒前
LUJL发布了新的文献求助10
19秒前
孙闹闹完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321446
求助须知:如何正确求助?哪些是违规求助? 4463163
关于积分的说明 13889191
捐赠科研通 4354367
什么是DOI,文献DOI怎么找? 2391707
邀请新用户注册赠送积分活动 1385278
关于科研通互助平台的介绍 1355062