An explainable machine-learning model for predicting persistent sepsis associated acute kidney injury: development, validation, and comparison with CCL14 (Preprint)

预印本 败血症 急性肾损伤 计算机科学 人工智能 医学 机器学习 心理学 重症监护医学 外科 万维网 内科学
作者
Wei Jiang,Yaosheng Zhang,Jiayi Weng,Song Lin,Siqi Liu,Xianghui Li,Shiqi Xu,Keran Shi,Luanluan Li,Chuanqing Zhang,Jing Wang,Quan Yuan,Yongwei Zhang,Jun Shao,Jiangquan Yu,Ruiqiang Zheng
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
标识
DOI:10.2196/62932
摘要

Persistent sepsis-associated acute kidney injury (SA-AKI) portends worse clinical outcomes and remains a therapeutic challenge for clinicians. Early identification and prediction of persistent SA-AKI is crucial. The aim of this study was to develop and validate an interpretable machine learning (ML) model that predicts persistent SA-AKI, and to compare its diagnostic performance with CCL14 in a prospective cohort. Four retrospective cohorts and one prospective cohort were used for model derivation and validation. The derivation cohort utilized the MIMIC-IV database, randomly split into 80% for model construction and 20% for internal validation. External validation is conducted using subsets of the MIMIC-III dataset, the e-ICU dataset, and retrospective cohorts from the ICU of a Northern Jiangsu people's hospital. Prospective data from the same ICU were used for validation and compared with urinary CCL14 biomarker measurements. AKI was defined based on serum creatinine and urine output, using the kidney disease: Improving Global Outcomes (KDIGO) criteria. Routine clinical data within the first 24 hours of ICU admission were collected, and eight ML algorithms were utilized to construct the prediction model. Multiple evaluation metrics, including the area under the receiver operating characteristic curve (AUC), were employed to compare predictive performance. Feature importance was ranked using SHAP, and the final model was explained accordingly. In addition, the model is developed into a web-based application using the Streamlit framework to facilitate its clinical application. In this study, a total of 46,097 sepsis patients from multiple cohorts were enrolled for analysis. Among the 17,928 sepsis patients in the derivation cohort, 8,081 cases (45.1%) developed into persistent SA-AKI. Among eight ML models, the Gradient Boosting Machine (GBM) model demonstrated superior discriminative ability. Following feature importance ranking, a final interpretable GBM model comprising twelve features (AKI stage, Δcreatinine, urine output, furosemide dose, BMI, SOFA score, KRT, mechanical ventilation, lactate, Bun, PT and age) was established. The final model accurately predicted the occurrence of persistent SA-AKI in both internal (AUC = 0.870) and external validation cohorts (MIMIC-III subset: AUC = 0.891, e-ICU dataset: AUC = 0.932, North Jiangsu people's Hospital retrospective cohort: AUC = 0.983). In the prospective cohort, the GBM model outperformed urinary CCL14 in predicting persistent SA-AKI (GBM AUC = 0.852 vs. CCL14 AUC = 0.821). Additionally, the model has been transformed into an online clinical tool to facilitate its application in clinical settings. The interpretable GBM model has been shown to successfully and accurately predict the occurrence of persistent SA-AKI, demonstrating good predictive ability in both internal and external validation cohorts. Furthermore, the model has been demonstrated to outperform the biomarker CCL14 in prospective cohort validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助小AB采纳,获得10
3秒前
攀攀完成签到,获得积分10
3秒前
QR发布了新的文献求助10
3秒前
单身的青柏完成签到 ,获得积分10
9秒前
搜集达人应助圈圈黄采纳,获得10
10秒前
简单面包完成签到,获得积分10
11秒前
西柚完成签到 ,获得积分10
15秒前
XHX完成签到,获得积分10
17秒前
bkagyin应助狂野的若雁采纳,获得10
18秒前
可爱的函函应助阿然采纳,获得10
21秒前
蟲先生完成签到 ,获得积分0
25秒前
26秒前
扬xue完成签到,获得积分20
28秒前
唐宝完成签到 ,获得积分10
30秒前
32秒前
jin发布了新的文献求助10
32秒前
扬xue发布了新的文献求助30
33秒前
非要叫我起个昵称完成签到,获得积分10
34秒前
LZY发布了新的文献求助10
35秒前
shunshun51213完成签到,获得积分10
35秒前
zxy完成签到 ,获得积分10
36秒前
李健的小迷弟应助安白采纳,获得10
39秒前
hbb完成签到 ,获得积分10
43秒前
汉堡包应助科研通管家采纳,获得10
43秒前
back you up应助科研通管家采纳,获得30
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
慕青应助科研通管家采纳,获得10
43秒前
zhu97应助科研通管家采纳,获得20
43秒前
汉堡包应助科研通管家采纳,获得10
43秒前
科研通AI5应助科研通管家采纳,获得10
43秒前
充电宝应助沁阳采纳,获得10
45秒前
LZY完成签到,获得积分10
46秒前
fdwang完成签到 ,获得积分10
48秒前
53秒前
54秒前
57秒前
57秒前
57秒前
归尘发布了新的文献求助10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778003
求助须知:如何正确求助?哪些是违规求助? 3323643
关于积分的说明 10215259
捐赠科研通 3038839
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339