An explainable machine-learning model for predicting persistent sepsis associated acute kidney injury: development, validation, and comparison with CCL14 (Preprint)

预印本 败血症 急性肾损伤 计算机科学 人工智能 医学 机器学习 心理学 重症监护医学 外科 万维网 内科学
作者
Wei Jiang,Yaosheng Zhang,Jiayi Weng,Song Lin,Siqi Liu,Xianghui Li,Shiqi Xu,Keran Shi,Luanluan Li,Chuanqing Zhang,Jing Wang,Quan Yuan,Yongwei Zhang,Jun Shao,Jiangquan Yu,Ruiqiang Zheng
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
标识
DOI:10.2196/62932
摘要

Persistent sepsis-associated acute kidney injury (SA-AKI) portends worse clinical outcomes and remains a therapeutic challenge for clinicians. Early identification and prediction of persistent SA-AKI is crucial. The aim of this study was to develop and validate an interpretable machine learning (ML) model that predicts persistent SA-AKI, and to compare its diagnostic performance with CCL14 in a prospective cohort. Four retrospective cohorts and one prospective cohort were used for model derivation and validation. The derivation cohort utilized the MIMIC-IV database, randomly split into 80% for model construction and 20% for internal validation. External validation is conducted using subsets of the MIMIC-III dataset, the e-ICU dataset, and retrospective cohorts from the ICU of a Northern Jiangsu people's hospital. Prospective data from the same ICU were used for validation and compared with urinary CCL14 biomarker measurements. AKI was defined based on serum creatinine and urine output, using the kidney disease: Improving Global Outcomes (KDIGO) criteria. Routine clinical data within the first 24 hours of ICU admission were collected, and eight ML algorithms were utilized to construct the prediction model. Multiple evaluation metrics, including the area under the receiver operating characteristic curve (AUC), were employed to compare predictive performance. Feature importance was ranked using SHAP, and the final model was explained accordingly. In addition, the model is developed into a web-based application using the Streamlit framework to facilitate its clinical application. In this study, a total of 46,097 sepsis patients from multiple cohorts were enrolled for analysis. Among the 17,928 sepsis patients in the derivation cohort, 8,081 cases (45.1%) developed into persistent SA-AKI. Among eight ML models, the Gradient Boosting Machine (GBM) model demonstrated superior discriminative ability. Following feature importance ranking, a final interpretable GBM model comprising twelve features (AKI stage, Δcreatinine, urine output, furosemide dose, BMI, SOFA score, KRT, mechanical ventilation, lactate, Bun, PT and age) was established. The final model accurately predicted the occurrence of persistent SA-AKI in both internal (AUC = 0.870) and external validation cohorts (MIMIC-III subset: AUC = 0.891, e-ICU dataset: AUC = 0.932, North Jiangsu people's Hospital retrospective cohort: AUC = 0.983). In the prospective cohort, the GBM model outperformed urinary CCL14 in predicting persistent SA-AKI (GBM AUC = 0.852 vs. CCL14 AUC = 0.821). Additionally, the model has been transformed into an online clinical tool to facilitate its application in clinical settings. The interpretable GBM model has been shown to successfully and accurately predict the occurrence of persistent SA-AKI, demonstrating good predictive ability in both internal and external validation cohorts. Furthermore, the model has been demonstrated to outperform the biomarker CCL14 in prospective cohort validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
落寞百合完成签到,获得积分10
2秒前
3秒前
李健的小迷弟应助ww采纳,获得10
3秒前
Owen应助方可采纳,获得10
3秒前
和谐的寄凡完成签到,获得积分10
3秒前
开朗寇发布了新的文献求助10
4秒前
豆豆发布了新的文献求助10
5秒前
CipherSage应助缓慢荔枝采纳,获得10
5秒前
YF发布了新的文献求助10
5秒前
6秒前
cocolu给为治的求助进行了留言
7秒前
Remember完成签到 ,获得积分10
7秒前
小张医生完成签到,获得积分10
9秒前
11秒前
Orange应助shui采纳,获得10
11秒前
思源应助开朗寇采纳,获得10
11秒前
Jackylee发布了新的文献求助30
12秒前
12秒前
合适的惜儿完成签到 ,获得积分20
12秒前
14秒前
君迁子关注了科研通微信公众号
15秒前
ww发布了新的文献求助10
16秒前
abai完成签到,获得积分10
17秒前
大力世界发布了新的文献求助10
18秒前
18秒前
狗妹那塞完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
20秒前
20秒前
20秒前
傲娇的睫毛膏完成签到,获得积分10
21秒前
22秒前
wwj完成签到,获得积分10
23秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 600
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906426
求助须知:如何正确求助?哪些是违规求助? 3452180
关于积分的说明 10868063
捐赠科研通 3177659
什么是DOI,文献DOI怎么找? 1755523
邀请新用户注册赠送积分活动 848845
科研通“疑难数据库(出版商)”最低求助积分说明 791323