非阻塞I/O
材料科学
兴奋剂
介电谱
X射线光电子能谱
钙钛矿(结构)
分析化学(期刊)
钙钛矿太阳能电池
电子迁移率
能量转换效率
电化学
光电子学
化学工程
电极
化学
结晶学
物理化学
生物化学
工程类
色谱法
催化作用
作者
Puja,Arpit Verma,P.V. Karthik Yadav,Kanwar Singh Nalwa,Mukesh Kumar
出处
期刊:Small
[Wiley]
日期:2025-06-05
标识
DOI:10.1002/smll.202504237
摘要
Abstract Hole selective inorganic transport layer plays an important role for higher stability of p‐i‐n perovskite solar cell. Here, this study investigates optimized Cu doping in NiO hole transport layer (HTL) and studied its interface with triple cation perovskite (Cs 0.05 (FA 0.83 MA 0.17 ) 0.95 Pb(I 0.83 Br 0.17 ) 3 ) absorbing layer. The optimized Cu doped NiO shows optical band gap of 3.17 eV with high electrical mobility and moderate carrier concentration of 43.2 cm 2 /V‐s and 1.51 × 10 18 cm −3 , respectively. X‐ray photoelectron spectroscopy analysis (XPS) shows modified Ni 3+ /Ni 2+ ratio with Cu doping in NiO, which enhances hole mobility and conductivity of HTL. The band alignment, recombination losses, and charge transport in several devices (FTO/Cu:NiO/Cs 0.05 (FA 0.83 MA 0.17 ) 0.95 Pb(I 0.83 Br 0.17 ) 3 /Au) are also investigated using capacitance‐ voltage (CV) and electrochemical impedance spectroscopy (EIS). Optimized HTL showed a lower trap density (5.20 × 10 20 cm − 2 eV − ¹), which resulted in a decrease of recombination losses and an increase in charge transport. The drift‐diffusion model based simulation results also reveals the impact of interface defect density on power conversion efficiency (PCE). Final solar cell is fabricated on optimum Cu doped NiO HTL layers which showed an efficiency of 16.61% with enhanced fill factor (FF) of 77%. This study provides a detailed analysis of Cu doped NiO and their band alignment for a potential hole transport material in triple cation perovskite solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI