已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning Predicts Bleeding Risk in Atrial Fibrillation Patients on Direct Oral Anticoagulant

心房颤动 口服抗凝剂 医学 心脏病学 内科学 抗凝剂 大出血 华法林
作者
Rahul Chaudhary,Mehdi Nourelahi,Floyd Thoma,Walid F. Gellad,Wei‐Hsuan Lo‐Ciganic,Rohit Chaudhary,Anahita Dua,Kevin P. Bliden,Paul A. Gurbel,Matthew D. Neal,Sandeep Jain,Aditya Bhonsale,Suresh Mulukutla,Yanshan Wang,Matthew E. Harinstein,Samir Saba,Shyam Visweswaran
出处
期刊:American Journal of Cardiology [Elsevier]
卷期号:244: 58-66 被引量:3
标识
DOI:10.1016/j.amjcard.2025.02.030
摘要

Predicting major bleeding in non-valvular atrial fibrillation (AF) patients on direct oral anticoagulants (DOACs) is crucial for personalized care. Alternatives like left atrial appendage closure devices lower stroke risk with fewer non-procedural bleeds. This study compares machine learning (ML) models with conventional bleeding risk scores (HAS-BLED, ORBIT, and ATRIA) for predicting bleeding events requiring hospitalization in AF patients on DOACs at their index cardiologist visit. This retrospective cohort study used electronic health records from 2010-2022 at the University of Pittsburgh Medical Center. It included 24,468 non-valvular AF patients (age ≥18) on DOACs, excluding those with prior significant bleeding or warfarin use. The primary outcome was hospitalization for bleeding within one year, with follow-up at one, two, and five years. ML algorithms (logistic regression, classification trees, random forest, XGBoost, k-nearest neighbor, naïve Bayes) were compared for performance. Of 24,468 patients, 553 (2.3%) had bleeding within one year, 829 (3.5%) within two years, and 1,292 (5.8%) within five years. ML models outperformed HAS-BLED, ATRIA, and ORBIT in 1-year predictions. The random forest model achieved an AUC of 0.76 (0.70-0.81), G-Mean of 0.67, and net reclassification index of 0.14 compared to HAS-BLED's AUC of 0.57 (p<0.001). ML models showed superior results across all timepoints and for hemorrhagic stroke. SHAP analysis identified new risk factors, including BMI, cholesterol profile, and insurance type. In conclusion, ML models demonstrated improved performance to conventional bleeding risk scores and uncovered novel risk factors, offering potential for more personalized bleeding risk assessment in AF patients on DOACs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yuki发布了新的文献求助10
2秒前
七尺大儒完成签到,获得积分10
3秒前
canghong发布了新的文献求助10
3秒前
4秒前
兮颜完成签到 ,获得积分10
5秒前
方方公主发布了新的文献求助10
6秒前
7秒前
7秒前
潇潇发布了新的文献求助10
8秒前
李正纲完成签到 ,获得积分10
10秒前
淡然大米完成签到 ,获得积分10
10秒前
我爱雪宝发布了新的文献求助10
13秒前
15秒前
15秒前
xxn完成签到 ,获得积分10
16秒前
17秒前
努力的淼淼完成签到 ,获得积分10
18秒前
Anlocia完成签到 ,获得积分10
18秒前
18秒前
研酒生完成签到,获得积分10
18秒前
云天发布了新的文献求助10
20秒前
舒心谷雪完成签到 ,获得积分10
21秒前
ZOE应助坚强的凤凰采纳,获得30
21秒前
22秒前
YJL完成签到 ,获得积分10
23秒前
单薄纸飞机完成签到,获得积分10
23秒前
24秒前
李爱国应助无私的颤采纳,获得10
25秒前
开心白凝发布了新的文献求助30
25秒前
风一样的风干肠完成签到 ,获得积分10
26秒前
moumou完成签到 ,获得积分10
26秒前
ahua完成签到 ,获得积分10
27秒前
levitt233完成签到 ,获得积分10
27秒前
31秒前
胸大无肌发布了新的文献求助30
31秒前
suxili完成签到 ,获得积分10
31秒前
领导范儿应助童话金采纳,获得10
32秒前
有趣的银完成签到,获得积分10
33秒前
烟花应助哈哈采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5834083
求助须知:如何正确求助?哪些是违规求助? 6085761
关于积分的说明 15589673
捐赠科研通 4952766
什么是DOI,文献DOI怎么找? 2669063
邀请新用户注册赠送积分活动 1614420
关于科研通互助平台的介绍 1569204