Machine Learning Predicts Bleeding Risk in Atrial Fibrillation Patients on Direct Oral Anticoagulant

心房颤动 口服抗凝剂 医学 心脏病学 内科学 抗凝剂 大出血 华法林
作者
Rahul Chaudhary,Mehdi Nourelahi,Floyd Thoma,Walid F. Gellad,Wei‐Hsuan Lo‐Ciganic,Rohit Chaudhary,Anahita Dua,Kevin P. Bliden,Paul A. Gurbel,Matthew D. Neal,Sandeep Jain,Aditya Bhonsale,Suresh Mulukutla,Yanshan Wang,Matthew E. Harinstein,Samir Saba,Shyam Visweswaran
出处
期刊:American Journal of Cardiology [Elsevier]
卷期号:244: 58-66 被引量:3
标识
DOI:10.1016/j.amjcard.2025.02.030
摘要

Predicting major bleeding in non-valvular atrial fibrillation (AF) patients on direct oral anticoagulants (DOACs) is crucial for personalized care. Alternatives like left atrial appendage closure devices lower stroke risk with fewer non-procedural bleeds. This study compares machine learning (ML) models with conventional bleeding risk scores (HAS-BLED, ORBIT, and ATRIA) for predicting bleeding events requiring hospitalization in AF patients on DOACs at their index cardiologist visit. This retrospective cohort study used electronic health records from 2010-2022 at the University of Pittsburgh Medical Center. It included 24,468 non-valvular AF patients (age ≥18) on DOACs, excluding those with prior significant bleeding or warfarin use. The primary outcome was hospitalization for bleeding within one year, with follow-up at one, two, and five years. ML algorithms (logistic regression, classification trees, random forest, XGBoost, k-nearest neighbor, naïve Bayes) were compared for performance. Of 24,468 patients, 553 (2.3%) had bleeding within one year, 829 (3.5%) within two years, and 1,292 (5.8%) within five years. ML models outperformed HAS-BLED, ATRIA, and ORBIT in 1-year predictions. The random forest model achieved an AUC of 0.76 (0.70-0.81), G-Mean of 0.67, and net reclassification index of 0.14 compared to HAS-BLED's AUC of 0.57 (p<0.001). ML models showed superior results across all timepoints and for hemorrhagic stroke. SHAP analysis identified new risk factors, including BMI, cholesterol profile, and insurance type. In conclusion, ML models demonstrated improved performance to conventional bleeding risk scores and uncovered novel risk factors, offering potential for more personalized bleeding risk assessment in AF patients on DOACs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gzslwddhjx发布了新的文献求助10
刚刚
Islet发布了新的文献求助10
刚刚
1秒前
1秒前
李爱国应助王雪儿哈哈哈采纳,获得10
2秒前
SciGPT应助llll采纳,获得10
2秒前
4秒前
4秒前
4秒前
4秒前
晚上吃什么完成签到,获得积分10
4秒前
ChemMa发布了新的文献求助10
5秒前
丫丫发布了新的文献求助10
5秒前
易安发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
笨笨忘幽发布了新的文献求助10
7秒前
窦文涛完成签到,获得积分10
7秒前
7秒前
完美世界应助liuying采纳,获得10
8秒前
9秒前
THJJ完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
云赵完成签到,获得积分10
10秒前
斯文败类应助易安采纳,获得10
10秒前
10秒前
CWNU_HAN应助jyk采纳,获得30
11秒前
高天雨发布了新的文献求助20
11秒前
THJJ发布了新的文献求助10
12秒前
健康的洋葱关注了科研通微信公众号
13秒前
幸福鞯发布了新的文献求助10
13秒前
suiwuya完成签到,获得积分10
13秒前
所所应助暖阳采纳,获得10
14秒前
知之发布了新的文献求助10
14秒前
哦呵发布了新的文献求助10
14秒前
菜菜mm发布了新的文献求助10
14秒前
14秒前
平淡寻菡应助sjh采纳,获得20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300