Grade-Skewed Domain Adaptation via Asymmetric Bi-Classifier Discrepancy Minimization for Diabetic Retinopathy Grading

分级(工程) 域适应 糖尿病性视网膜病变 计算机科学 人工智能 缩小 分类器(UML) 模式识别(心理学) 医学 糖尿病 工程类 程序设计语言 土木工程 内分泌学
作者
Yuan Ma,Yang Gu,Shuai Guo,Xindong Qin,Shi-Jie Wen,Nianfeng Shi,Weiwei Dai,Yiqiang Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (3): 1115-1126 被引量:3
标识
DOI:10.1109/tmi.2024.3485064
摘要

Diabetic retinopathy (DR) is a leading cause of preventable low vision worldwide. Deep learning has exhibited promising performance in the grading of DR. Certain deep learning strategies have facilitated convenient regular eye check-ups, which are crucial for managing DR and preventing severe visual impairment. However, the generalization performance on cross-center, cross-vendor, and cross-user test datasets is compromised due to domain shift. Furthermore, the presence of small lesions and the imbalanced grade distribution, resulting from the characteristics of DR grading (e.g., the progressive nature of DR disease and the design of grading standards), complicates image-level domain adaptation for DR grading. The general predictions of the models trained on grade-skewed source domains will be significantly biased toward the majority grades, which further increases the adaptation difficulty. We formulate this problem as a grade-skewed domain adaptation challenge. Under the grade-skewed domain adaptation problem, we propose a novel method for image-level supervised DR grading via Asymmetric Bi-Classifier Discrepancy Minimization (ABiD). First, we propose optimizing the feature extractor by minimizing the discrepancy between the predictions of the asymmetric bi-classifier based on two classification criteria to encourage the exploration of crucial features in adjacent grades and stretch the distribution of adjacent grades in the latent space. Moreover, the classifier difference is maximized by using the forward and inverse distribution compensation mechanism to locate easily confused instances, which avoids pseudo-label bias on the target domain. The experimental results on two public DR datasets and one private DR dataset demonstrate that our method outperforms state-of-the-art methods significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DH发布了新的文献求助10
1秒前
云墨发布了新的文献求助10
1秒前
Z鸡汤发布了新的文献求助20
2秒前
song发布了新的文献求助10
2秒前
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
cosmos应助科研通管家采纳,获得10
3秒前
3秒前
浮游应助科研通管家采纳,获得20
3秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
老福贵儿应助科研通管家采纳,获得10
4秒前
4秒前
askdha发布了新的文献求助10
4秒前
所所应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
sai发布了新的文献求助30
7秒前
7秒前
科研通AI6应助落寞的易绿采纳,获得10
8秒前
嘻嘻哈哈眼药水完成签到,获得积分10
9秒前
10秒前
handsomeboy发布了新的文献求助50
10秒前
归尘发布了新的文献求助10
10秒前
弱水完成签到,获得积分0
10秒前
LL关闭了LL文献求助
11秒前
啊chuuu完成签到,获得积分10
11秒前
张不胖完成签到,获得积分10
11秒前
11秒前
13秒前
量子星尘发布了新的文献求助100
13秒前
shaft完成签到,获得积分10
13秒前
阳先森完成签到 ,获得积分10
13秒前
15秒前
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981