Identification of serum exosomal lncRNAs and their potential regulation of characteristic genes of fibroblast-like synoviocytes in rheumatoid arthritis

类风湿性关节炎 成纤维细胞 基因 鉴定(生物学) 癌症研究 生物 关节炎 细胞生物学 免疫学 计算生物学 医学 遗传学 细胞培养 植物
作者
Tony Zhou,Chun-Lan Yang,Jiequan Wang,Ling Fang,Quan Xia,Ya-ru Liu
出处
期刊:International Immunopharmacology [Elsevier BV]
卷期号:143: 113382-113382 被引量:1
标识
DOI:10.1016/j.intimp.2024.113382
摘要

Rheumatoid arthritis (RA) is a common autoimmune disease whose pathogenesis is poorly understand. Gaps in laboratory biomarkers cause a lack of clinically available strategies for the early diagnosis and treatment of RA. This study aims to identify serum exosomal lncRNAs as promising biomarkers and to unravel potential mechanisms by which they affect characteristic genes of fibroblast-like synoviocytes (FLSs) to induce RA malignant properties. RNA sequencing datasets of serum exosomes (GSE271161 and PRJNA911001) and FLSs (GSE103578, GSE122616, GSE128813, GSE181614 and GSE83147) were purposively mined. Visualization and functional enrichment of differentially expressed (DE) lncRNAs/protein-coding genes, screening of significant lncRNAs, and construction of competing endogenous RNAs (ceRNAs) and protein-protein interaction (PPI) network were carried out. Quantitative real-time PCR, receiver operating characteristic curve (ROC) and correlation analysis were conducted on the validation cohort. As a result, we screened a total of 131 serum exosomal DElncRNAs and 125 FLSs DEmRNAs, which were predominantly enriched in the proliferative, inflammatory and metabolic pathways. In-depth learning of DElncRNAs expression profiles was performed to identify models with better performance and lncRNAs with higher importance scores using 4 machine learning algorithms (SVM, KNN, RF, Logit), which led to the establishment of ceRNAs network linking serum exosomal lncRNAs and characteristic genes of FLSs. In short, we proposed that 4 RA-representative serum exosomal lncRNAs (DLEU2, FAM13A-AS1, MEG3 and SNHG15) may be applied as valuable indicators for laboratory tests, and their-mediated intercellular communication and ceRNAs network may regulate the characteristic genes of FLSs, thereby generating malignant phenotypes and adaptive synovial microenvironment in RA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好不好发布了新的文献求助10
2秒前
薇薇完成签到,获得积分10
2秒前
尘埃之影完成签到,获得积分10
2秒前
3秒前
davidwuran发布了新的文献求助10
3秒前
永远爱刻晴完成签到 ,获得积分10
4秒前
LW完成签到,获得积分10
4秒前
5秒前
kxy完成签到,获得积分10
6秒前
Dannerys完成签到 ,获得积分10
6秒前
lilil完成签到,获得积分10
7秒前
Kai完成签到,获得积分10
8秒前
young完成签到,获得积分10
8秒前
Alex完成签到,获得积分10
8秒前
SDM完成签到 ,获得积分10
8秒前
僵小柏完成签到,获得积分10
8秒前
不一样的烟火完成签到,获得积分10
8秒前
夏末完成签到,获得积分20
9秒前
默默的素阴完成签到,获得积分10
9秒前
mss12138完成签到,获得积分10
11秒前
爱蜜莉亚QAQ完成签到,获得积分10
11秒前
眇鱼完成签到 ,获得积分10
12秒前
无花果应助三新荞采纳,获得10
12秒前
尊敬枕头完成签到 ,获得积分10
12秒前
75986686完成签到,获得积分10
12秒前
kkkkllll完成签到,获得积分10
13秒前
13秒前
帮主哥哥完成签到,获得积分10
13秒前
小明完成签到,获得积分10
13秒前
15秒前
16秒前
cdercder应助007采纳,获得10
16秒前
16秒前
过冷风发布了新的文献求助10
17秒前
drbrianlau完成签到,获得积分10
18秒前
WenzongLai完成签到,获得积分10
19秒前
Akio完成签到,获得积分10
19秒前
达达尼发布了新的文献求助10
20秒前
孤独的蚂蚁完成签到 ,获得积分10
20秒前
旭龙完成签到,获得积分10
21秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820027
求助须知:如何正确求助?哪些是违规求助? 3362923
关于积分的说明 10419615
捐赠科研通 3081277
什么是DOI,文献DOI怎么找? 1695047
邀请新用户注册赠送积分活动 814884
科研通“疑难数据库(出版商)”最低求助积分说明 768545