Scalable and Structural Multi-view Graph Clustering with Adaptive Anchor Fusion

计算机科学 聚类分析 可扩展性 融合 图形 人工智能 图论 模式识别(心理学) 理论计算机科学 算法 数据挖掘 数学 组合数学 语言学 哲学 数据库
作者
Siwei Wang,Xinwang Liu,Suyuan Liu,Wenxuan Tu,En Zhu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4627-4639 被引量:9
标识
DOI:10.1109/tip.2024.3444320
摘要

Anchor graph has been recently proposed to accelerate multi-view graph clustering and widely applied in various large-scale applications. Different from capturing full instance relationships, these methods choose small portion anchors among each view, construct single-view anchor graphs and combine them into the unified graph. Despite its efficiency, we observe that: (i) Existing mechanism adopts a separable two-step procedure-anchor graph construction and individual graph fusion, which may degrade the clustering performance. (ii)These methods determine the number of selected anchors to be equal among all the views, which may destruct the data distribution diversity. A more flexible multi-view anchor graph fusion framework with diverse magnitudes is desired to enhance the representation ability. (iii) During the latter fusion process, current anchor graph fusion framework follows simple linearly-combined style while the intrinsic clustering structures are ignored. To address these issues, we propose a novel scalable and flexible anchor graph fusion framework for multi-view graph clustering method in this paper. Specially, the anchor graph construction and graph alignment are jointly optimized in our unified framework to boost clustering quality. Moreover, we present a novel structural alignment regularization to adaptively fuse multiple anchor graphs with different magnitudes. In addition, our proposed method inherits the linear complexity of existing anchor strategies respecting to the sample number, which is time-economical for large-scale data. Experiments conducted on various benchmark datasets demonstrate the superiority and effectiveness of the newly proposed anchor graph fusion framework against the existing state-of-the-arts over the clustering performance promotion and time expenditure. Our code is publicly available at https://github.com/wangsiwei2010/SMVAGC-SF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助小白采纳,获得10
1秒前
Hydrogen发布了新的文献求助10
1秒前
十三完成签到,获得积分10
1秒前
1秒前
Lee发布了新的文献求助30
2秒前
羊羊发布了新的文献求助30
2秒前
2秒前
情怀应助聪慧雪糕采纳,获得10
2秒前
张宇鑫发布了新的文献求助10
2秒前
辛勤的乌发布了新的文献求助10
3秒前
money完成签到,获得积分10
3秒前
sun发布了新的文献求助30
3秒前
nianxunxi发布了新的文献求助200
4秒前
共享精神应助初七123采纳,获得10
4秒前
指南针指北完成签到 ,获得积分10
4秒前
汉堡包应助小蜜蜂采纳,获得10
5秒前
桐桐应助kln0403采纳,获得10
5秒前
Zsting发布了新的文献求助10
5秒前
6秒前
终梦应助volunteer采纳,获得20
6秒前
6秒前
sx发布了新的文献求助30
6秒前
大大鱼发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
8秒前
清风朗月完成签到,获得积分10
8秒前
张仕俊完成签到,获得积分10
8秒前
终梦应助塔菲尔采纳,获得20
9秒前
money发布了新的文献求助10
9秒前
乐观的海发布了新的文献求助10
9秒前
hgy完成签到 ,获得积分10
10秒前
高兴致远发布了新的文献求助10
11秒前
11秒前
成事在人307完成签到,获得积分10
11秒前
心灵尔安发布了新的文献求助10
12秒前
12秒前
黑海岸学者完成签到,获得积分10
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344166
求助须知:如何正确求助?哪些是违规求助? 4479497
关于积分的说明 13943155
捐赠科研通 4376560
什么是DOI,文献DOI怎么找? 2404847
邀请新用户注册赠送积分活动 1397207
关于科研通互助平台的介绍 1369579