Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using a multimodal neural network

脑出血 血肿 人工神经网络 医学 计算机科学 人工智能 内科学 放射科 蛛网膜下腔出血
作者
Satoru Tanioka,Orhun Utku Aydin,Adam Hilbert,Fujimaro Ishida,Kazuhiko Tsuda,Tomohiro Araki,Yoshinari Nakatsuka,Tetsushi Yago,Tomoyuki Kishimoto,Munenari Ikezawa,Hidenori Suzuki,Dietmar Frey
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:8
标识
DOI:10.1038/s41598-024-67365-3
摘要

Hematoma expansion occasionally occurs in patients with intracerebral hemorrhage (ICH), associating with poor outcome. Multimodal neural networks incorporating convolutional neural network (CNN) analysis of images and neural network analysis of tabular data are known to show promising results in prediction and classification tasks. We aimed to develop a reliable multimodal neural network model that comprehensively analyzes CT images and clinical variables to predict hematoma expansion. We retrospectively enrolled ICH patients at four hospitals between 2017 and 2021, assigning patients from three hospitals to the training and validation dataset and patients from one hospital to the test dataset. Admission CT images and clinical variables were collected. CT findings were evaluated by experts. Three types of models were developed and trained: (1) a CNN model analyzing CT images, (2) a multimodal CNN model analyzing CT images and clinical variables, and (3) a non-CNN model analyzing CT findings and clinical variables with machine learning. The models were evaluated on the test dataset, focusing first on sensitivity and second on area under the receiver operating curve (AUC). Two hundred seventy-three patients (median age, 71 years [59-79]; 159 men) in the training and validation dataset and 106 patients (median age, 70 years [62-82]; 63 men) in the test dataset were included. Sensitivity and AUC of a CNN model were 1.000 (95% confidence interval [CI] 0.768-1.000) and 0.755 (95% CI 0.704-0.807); those of a multimodal CNN model were 1.000 (95% CI 0.768-1.000) and 0.799 (95% CI 0.749-0.849); and those of a non-CNN model were 0.857 (95% CI 0.572-0.982) and 0.733 (95% CI 0.625-0.840). We developed a multimodal neural network model incorporating CNN analysis of CT images and neural network analysis of clinical variables to predict hematoma expansion in ICH. The model was externally validated and showed the best performance of all the models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
onyourleft发布了新的文献求助10
1秒前
2秒前
5秒前
5秒前
kkkkk完成签到,获得积分10
5秒前
6秒前
无心的不平完成签到,获得积分20
7秒前
7秒前
李爱国应助fwm采纳,获得10
8秒前
yuzhecheng发布了新的文献求助10
11秒前
明芬发布了新的文献求助10
11秒前
cstp发布了新的文献求助10
12秒前
无花果应助lzs采纳,获得10
13秒前
dzy1317完成签到,获得积分10
13秒前
13秒前
dyd发布了新的文献求助10
16秒前
所所应助小贾爱喝冰美式采纳,获得10
18秒前
lin完成签到,获得积分10
21秒前
情怀应助小迷鹿采纳,获得10
22秒前
BulingQAQ发布了新的文献求助10
23秒前
lzs完成签到,获得积分20
23秒前
24秒前
风趣雪一应助cstp采纳,获得10
25秒前
彭于晏完成签到,获得积分10
27秒前
可爱的函函应助xun采纳,获得10
28秒前
lzs发布了新的文献求助10
29秒前
BulingQAQ完成签到,获得积分10
33秒前
赵赵完成签到 ,获得积分10
34秒前
cstp完成签到,获得积分10
36秒前
40秒前
绿洲完成签到,获得积分10
45秒前
橘子的橘发布了新的文献求助10
47秒前
lilili完成签到 ,获得积分10
47秒前
48秒前
49秒前
碳酸氢钠完成签到,获得积分10
50秒前
轻松的贞完成签到,获得积分10
50秒前
52秒前
雪山飞龙发布了新的文献求助10
52秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4784677
求助须知:如何正确求助?哪些是违规求助? 4111863
关于积分的说明 12720841
捐赠科研通 3836588
什么是DOI,文献DOI怎么找? 2115392
邀请新用户注册赠送积分活动 1138391
关于科研通互助平台的介绍 1024409