Copper nanoparticles loaded gelatin/ polyvinyl alcohol/ guar gum-based 3D printable multimaterial hydrogel for tissue engineering applications

聚乙烯醇 瓜尔胶 明胶 纳米颗粒 化学工程 材料科学 瓜尔 高分子科学 组织工程 高分子化学 化学 纳米技术 复合材料 生物医学工程 有机化学 工程类 食品科学
作者
Devara Venkata Krishna,Mamilla Ravi Sankar,Potukuchi Venkata Gurunadha Krishna Sarma,Echambadi Loganathan Samundeshwari
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:276: 133866-133866 被引量:12
标识
DOI:10.1016/j.ijbiomac.2024.133866
摘要

Hydrogels are becoming increasingly significant in tissue engineering because of their numerous benefits, including biocompatibility, biodegradability, and their ability to provide a supportive structure for cell proliferation. This study presents the synthesis and characterization of a new multimaterial hydrogel with 3D-printing capabilities composed of copper nanoparticle-reinforced gelatin, polyvinyl alcohol (PVA), and guar gum-based biomaterials intended for tissue engineering applications. Combining CuNPs aims to enhance the hydrogel's antibacterial properties, mechanical strength, and bioactivity, which are essential for successful tissue regeneration. Hydrogels are chemically cross-linked with glyoxal and analyzed through different assessments to examine the compressive behavior, surface morphology, sorbing capacity, biocompatibility, thermal stability, and degradation properties. The results demonstrated that including CuNPs significantly improved the hydrogel's compressive modulus (4.18 MPa) for the hydrogel with the CuNPs and provided better antibacterial activity against common pathogens with controlled degradation. All the hydrogels exhibited a lower coefficient of friction, which was below 0.1. In vitro cell culture studies using chondrocytes indicated that the CuNPs-loaded hydrogel supported cell proliferation and growth of chondrogenic genes such as collagen type II (COL2) and aggrecan (ACAN). The biocompatibility and enhanced mechanical properties of the multimaterial hydrogel make it a promising candidate for developing customized, patient-specific tissue engineering scaffolds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DraGon发布了新的文献求助10
2秒前
2秒前
ll关闭了ll文献求助
3秒前
3秒前
娇娇实验都顺利完成签到,获得积分10
3秒前
kyra完成签到,获得积分10
6秒前
痛痛痛发布了新的文献求助10
6秒前
8秒前
8秒前
卷毛兔发布了新的文献求助10
8秒前
笑点低小夏完成签到,获得积分10
9秒前
Lin琳完成签到,获得积分10
9秒前
标致水之完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助20
12秒前
刘洋完成签到,获得积分10
12秒前
Akim应助DraGon采纳,获得10
13秒前
smile发布了新的文献求助10
13秒前
史萌发布了新的文献求助10
13秒前
heee完成签到 ,获得积分10
13秒前
14秒前
猪猪hero应助陈美宏采纳,获得10
16秒前
16秒前
张靖完成签到,获得积分10
16秒前
17秒前
18秒前
打打应助杨立胜采纳,获得10
20秒前
20秒前
20秒前
wzf123456完成签到,获得积分10
21秒前
biscuits发布了新的文献求助10
22秒前
大只完成签到,获得积分10
22秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
24秒前
健康的肺发布了新的文献求助10
24秒前
wzf123456发布了新的文献求助10
25秒前
25秒前
pp‘s发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886455
求助须知:如何正确求助?哪些是违规求助? 4171357
关于积分的说明 12945002
捐赠科研通 3931958
什么是DOI,文献DOI怎么找? 2157340
邀请新用户注册赠送积分活动 1175724
关于科研通互助平台的介绍 1080293