ChatGPT for Textual Analysis? How to Use Generative LLMs in Accounting Research

生成语法 会计 经济 计算机科学 人工智能
作者
Ties de Kok
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:14
标识
DOI:10.1287/mnsc.2023.03253
摘要

Generative large language models (GLLMs), such as ChatGPT and GPT-4 by OpenAI, are emerging as powerful tools for textual analysis tasks in accounting research. GLLMs can solve any textual analysis task solvable using nongenerative methods as well as tasks previously only solvable using human coding. Whereas GLLMs are new and powerful, they also come with limitations and present new challenges that require care and due diligence. This paper highlights the applications of GLLMs for accounting research and compares them with existing methods. It also provides a framework on how to effectively use GLLMs by addressing key considerations, such as model selection, prompt engineering, and ensuring construct validity. In a case study, I demonstrate the capabilities of GLLMs by detecting nonanswers in earnings conference calls, a traditionally challenging task to automate. The new GPT method achieves an accuracy of 96% and reduces the nonanswer error rate by 70% relative to the existing Gow et al. (2021) method. Finally, I discuss the importance of addressing bias, replicability, and data sharing concerns when using GLLMs. Taken together, this paper provides researchers, reviewers, and editors with the knowledge and tools to effectively use and evaluate GLLMs for academic research. This paper was accepted by Eric So, accounting. Funding: Supported by the Foster School of Business – University of Washington. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.03253 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GAO完成签到,获得积分10
刚刚
李健应助微光采纳,获得10
1秒前
小透明发布了新的文献求助10
3秒前
Orange应助胡先生的小口袋采纳,获得10
9秒前
故意的寒安完成签到,获得积分10
10秒前
CipherSage应助爱撒娇的紫菜采纳,获得10
11秒前
wq完成签到,获得积分10
11秒前
11秒前
14秒前
核桃应助Nobody采纳,获得10
18秒前
晨晨CC发布了新的文献求助10
18秒前
21秒前
21秒前
22秒前
huanglu完成签到,获得积分10
23秒前
23秒前
大气靳完成签到,获得积分20
24秒前
kongkong完成签到,获得积分10
24秒前
可爱的函函应助健壮凡桃采纳,获得10
24秒前
归海亦云发布了新的文献求助10
25秒前
晨晨CC完成签到,获得积分20
26秒前
李存发布了新的文献求助10
26秒前
激动的访文完成签到,获得积分10
27秒前
明理宛秋完成签到 ,获得积分10
27秒前
jinzhou发布了新的文献求助10
27秒前
28秒前
30秒前
科目三应助李存采纳,获得10
32秒前
33秒前
35秒前
丘比特应助zpw123123采纳,获得10
36秒前
lyp完成签到,获得积分10
41秒前
42秒前
momo驳回了Blassom应助
42秒前
顾矜应助besatified采纳,获得10
44秒前
HaHa007完成签到,获得积分10
47秒前
跳跳完成签到,获得积分10
47秒前
春风柳上原完成签到,获得积分10
48秒前
49秒前
研友_VZG7GZ应助c程序语言采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4721929
求助须知:如何正确求助?哪些是违规求助? 4081567
关于积分的说明 12622146
捐赠科研通 3787016
什么是DOI,文献DOI怎么找? 2091511
邀请新用户注册赠送积分活动 1117541
科研通“疑难数据库(出版商)”最低求助积分说明 994329