Elucidating the role of gut microbiota metabolites in diabetes by employing network pharmacology

肠道菌群 小桶 代谢组学 生物 背景(考古学) 代谢组 计算生物学 代谢物 生物信息学 生物化学 基因本体论 基因 古生物学 基因表达
作者
Weiguo Yao,Jinlin Huo,Jing Ji,Kun Liu,Pengyu Tao
出处
期刊:Molecular Medicine [BioMed Central]
卷期号:30 (1)
标识
DOI:10.1186/s10020-024-01033-0
摘要

Extensive research has underscored the criticality of preserving diversity and equilibrium within the gut microbiota for optimal human health. However, the precise mechanisms by which the metabolites and targets of the gut microbiota exert their effects remain largely unexplored. This study utilizes a network pharmacology methodology to elucidate the intricate interplay between the microbiota, metabolites, and targets in the context of DM, thereby facilitating a more comprehensive comprehension of this multifaceted disease. In this study, we initially extracted metabolite information of gut microbiota metabolites from the gutMGene database. Subsequently, we employed the SEA and STP databases to discern targets that are intricately associated with these metabolites. Furthermore, we leveraged prominent databases such as Genecard, DisGeNET, and OMIM to identify targets related to diabetes. A protein-protein interaction (PPI) network was established to screen core targets. Additionally, we conducted comprehensive GO and KEGG enrichment analyses utilizing the DAVID database. Moreover, a network illustrating the relationship among microbiota-substrate-metabolite-target was established. We identified a total of 48 overlapping targets between gut microbiota metabolites and diabetes. Subsequently, we selected IL6, AKT1 and PPARG as core targets for the treatment of diabetes. Through the construction of the MSMT comprehensive network, we discovered that the three core targets exert therapeutic effects on diabetes through interactions with 8 metabolites, 3 substrates, and 5 gut microbiota. Additionally, GO analysis revealed that gut microbiota metabolites primarily regulate oxidative stress, inflammation and cell proliferation. KEGG analysis results indicated that IL-17, PI3K/AKT, HIF-1, and VEGF are the main signaling pathways involved in DM. Gut microbiota metabolites primarily exert their therapeutic effects on diabetes through the IL6, AKT1, and PPARG targets. The mechanisms of gut microbiota metabolites regulating DM might involve signaling pathways such as IL-17 pathways, HIF-1 pathways and VEGF pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助点酒成诗采纳,获得30
2秒前
zhuming发布了新的文献求助10
2秒前
123完成签到,获得积分10
3秒前
3秒前
Alex发布了新的文献求助10
3秒前
3秒前
Shandongdaxiu发布了新的文献求助10
6秒前
BYG完成签到,获得积分10
7秒前
青出于蓝蔡完成签到,获得积分10
7秒前
nenoaowu发布了新的文献求助30
9秒前
SciGPT应助nenoaowu采纳,获得10
13秒前
科研通AI5应助轻松小张采纳,获得10
16秒前
Li完成签到,获得积分20
16秒前
领导范儿应助端庄洪纲采纳,获得10
21秒前
英俊的铭应助邓邵斌采纳,获得10
23秒前
桐桐应助Yang采纳,获得10
24秒前
pengyh8完成签到,获得积分10
26秒前
田様应助那当然采纳,获得10
29秒前
33秒前
37秒前
端庄洪纲发布了新的文献求助10
37秒前
大个应助墨墨采纳,获得10
40秒前
轻松小张发布了新的文献求助10
42秒前
科研通AI2S应助活泼山雁采纳,获得10
46秒前
聪明梦之关注了科研通微信公众号
48秒前
49秒前
50秒前
烟花应助等下采纳,获得10
52秒前
科研通AI5应助端庄洪纲采纳,获得10
53秒前
那当然发布了新的文献求助10
53秒前
54秒前
55秒前
邓邵斌发布了新的文献求助10
57秒前
57秒前
LHL发布了新的文献求助10
58秒前
枯草发布了新的文献求助10
1分钟前
guo完成签到,获得积分0
1分钟前
1分钟前
1分钟前
叶95发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777289
求助须知:如何正确求助?哪些是违规求助? 3322579
关于积分的说明 10210765
捐赠科研通 3037943
什么是DOI,文献DOI怎么找? 1666984
邀请新用户注册赠送积分活动 797884
科研通“疑难数据库(出版商)”最低求助积分说明 758061