Cascade Ownership Verification Framework Based on Invisible Watermark for Model Copyright Protection

计算机科学 水印 数字水印 计算机安全 级联 人工智能 图像(数学) 色谱法 化学
作者
Ruoxi Wang,Yujia Zhu,Daoxun Xia
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:37 (4-5)
标识
DOI:10.1002/cpe.8394
摘要

ABSTRACT Successfully training a model requires substantial computational power, excellent model design, and high training costs, which implies that a well‐trained model holds significant commercial value. Protecting a trained Deep Neural Network (DNN) model from Intellectual Property (IP) infringement has become a matter of intense concern recently. Particularly, embedding and verifying watermarks in black‐box models without accessing internal model parameters, while ensuring the robustness and invisibility of the watermark, remains a challenging issue. Unlike many existing methods, we propose a cascade ownership verification framework based on invisible watermarks, with a focus on how to effectively protect the copyright of black‐box watermark models and detect unauthorized users' infringement behaviors. This framework consists of two parts: watermark generation and copyright verification. In the watermark generation phase, watermarked samples are generated from key samples and label images. The difference between watermarked samples and key samples is imperceptible, while a specific identifier has been injected into the watermarked samples, leaving a backdoor as an entry point for copyright verification. The copyright verification phase employs hypothesis testing to enhance the confidence level of verification. In image classification tasks based on MNIST, CIFAR‐10, and CIFAR‐100 datasets, experiments were conducted on several popular deep learning models. The experimental results show that this framework offers high security and effectiveness in protecting model copyrights and demonstrates strong robustness against pruning and fine‐tuning attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keep完成签到 ,获得积分10
刚刚
丘比特应助清1994采纳,获得10
1秒前
安详的断缘完成签到,获得积分10
1秒前
共享精神应助zhuzhuzhu1024采纳,获得10
4秒前
5秒前
枯风晓月完成签到,获得积分10
6秒前
彳亍1117应助liuguohua126采纳,获得10
7秒前
7秒前
房靳完成签到,获得积分20
7秒前
8秒前
8秒前
9秒前
xcx完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
没钱搞什么学术完成签到 ,获得积分10
11秒前
czyzyzy完成签到,获得积分10
11秒前
12秒前
朝菌发布了新的文献求助10
12秒前
12秒前
xcx发布了新的文献求助10
12秒前
sptyzl完成签到 ,获得积分10
13秒前
房靳发布了新的文献求助30
13秒前
14秒前
安静无招完成签到 ,获得积分10
14秒前
Loki完成签到,获得积分10
16秒前
水电费完成签到,获得积分10
16秒前
linkman完成签到,获得积分0
16秒前
17秒前
17秒前
Orange应助不知道是谁采纳,获得10
18秒前
18秒前
shinen完成签到,获得积分10
19秒前
做不了一点科研完成签到 ,获得积分10
20秒前
20秒前
21秒前
nuo_11完成签到,获得积分10
21秒前
锦江完成签到,获得积分10
22秒前
温暖小松鼠完成签到 ,获得积分10
22秒前
WTH完成签到,获得积分10
22秒前
细心的代天完成签到 ,获得积分10
23秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4288650
求助须知:如何正确求助?哪些是违规求助? 3815838
关于积分的说明 11950436
捐赠科研通 3460464
什么是DOI,文献DOI怎么找? 1897981
邀请新用户注册赠送积分活动 946369
科研通“疑难数据库(出版商)”最低求助积分说明 849769