已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Graph neural networks in histopathology: Emerging trends and future directions

人工神经网络 图形 计算机科学 人工智能 机器学习 理论计算机科学
作者
Siemen Brussee,Giorgio Buzzanca,Anne M.R. Schrader,Jesper Kers
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:101: 103444-103444 被引量:5
标识
DOI:10.1016/j.media.2024.103444
摘要

Histopathological analysis of whole slide images (WSIs) has seen a surge in the utilization of deep learning methods, particularly Convolutional Neural Networks (CNNs). However, CNNs often fail to capture the intricate spatial dependencies inherent in WSIs. Graph Neural Networks (GNNs) present a promising alternative, adept at directly modeling pairwise interactions and effectively discerning the topological tissue and cellular structures within WSIs. Recognizing the pressing need for deep learning techniques that harness the topological structure of WSIs, the application of GNNs in histopathology has experienced rapid growth. In this comprehensive review, we survey GNNs in histopathology, discuss their applications, and explore emerging trends that pave the way for future advancements in the field. We begin by elucidating the fundamentals of GNNs and their potential applications in histopathology. Leveraging quantitative literature analysis, we explore four emerging trends: Hierarchical GNNs, Adaptive Graph Structure Learning, Multimodal GNNs, and Higher-order GNNs. Through an in-depth exploration of these trends, we offer insights into the evolving landscape of GNNs in histopathological analysis. Based on our findings, we propose future directions to propel the field forward. Our analysis serves to guide researchers and practitioners towards innovative approaches and methodologies, fostering advancements in histopathological analysis through the lens of graph neural networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chiyudawang发布了新的文献求助10
刚刚
2秒前
zzh完成签到,获得积分10
2秒前
还单身的莆完成签到,获得积分10
3秒前
5秒前
5秒前
若雨凌风应助Fqdgest采纳,获得150
7秒前
眯眯眼的衬衫应助李不慌采纳,获得10
8秒前
8秒前
畅快厉发布了新的文献求助10
8秒前
8秒前
汪政希发布了新的文献求助30
9秒前
牛牛完成签到,获得积分10
9秒前
10秒前
不个完成签到 ,获得积分10
10秒前
11秒前
11秒前
12秒前
NexusExplorer应助呃呃呃采纳,获得10
12秒前
CYTing发布了新的文献求助10
14秒前
zzh发布了新的文献求助10
14秒前
酷波er应助科研民工采纳,获得10
15秒前
赘婿应助张文懿采纳,获得10
16秒前
kk发布了新的文献求助10
18秒前
18秒前
刘哔完成签到,获得积分10
19秒前
21秒前
99668完成签到,获得积分10
21秒前
PJZou发布了新的文献求助10
21秒前
瞿采枫完成签到 ,获得积分10
23秒前
25秒前
呃呃呃发布了新的文献求助10
25秒前
Ducky完成签到,获得积分10
26秒前
30秒前
30秒前
33秒前
阿秋秋秋完成签到 ,获得积分10
33秒前
张文懿发布了新的文献求助10
34秒前
34秒前
梁33完成签到,获得积分10
36秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885614
求助须知:如何正确求助?哪些是违规求助? 3427657
关于积分的说明 10756256
捐赠科研通 3152598
什么是DOI,文献DOI怎么找? 1740402
邀请新用户注册赠送积分活动 840237
科研通“疑难数据库(出版商)”最低求助积分说明 785236