光学
极化(电化学)
偏振模色散
反向
反问题
材料科学
折射率
光传递函数
物理
色散(光学)
数学
数学分析
化学
几何学
物理化学
作者
Fan Gao,Chenchen Yang,Xiaoming Zhang,Jingwen Wang,Zhengying Ou,Juan Deng,Bo Yan
出处
期刊:Optics Letters
[Optica Publishing Group]
日期:2024-12-09
卷期号:50 (1): 189-189
被引量:2
摘要
Polarization and wavelength multiplexed metalenses address the bulkiness of traditional imaging systems. However, despite progress with numerical simulations and parameter scanning, the engineering complexity of classical methods highlights the urgent need for efficient deep learning approaches. This paper introduces a deep learning-driven inverse design model for polarization-multiplexed metalenses, employing propagation phase theory alongside spectral transfer learning to address chromatic dispersion challenges. The model facilitates the rapid design of metalenses with off-axis and dual-focus capabilities within a single wavelength. Numerical simulations reveal a focal length deviation of less than 5% and an average focusing efficiency of 43.3%. The integration of spectral transfer learning streamlines the design process, enabling multifunctional metalenses with enhanced full-color imaging and displacement measurement, thus advancing the field of metasurfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI