Accelerating the identification of the allergenic potential of plant proteins using a stacked ensemble-learning framework

鉴定(生物学) 计算生物学 集成学习 化学 计算机科学 生物 机器学习 植物
作者
Phasit Charoenkwan,Pramote Chumnanpuen,Nalini Schaduangrat,Watshara Shoombuatong
出处
期刊:Journal of Biomolecular Structure & Dynamics [Taylor & Francis]
卷期号:: 1-13
标识
DOI:10.1080/07391102.2024.2318482
摘要

Plant-allergenic proteins (PAPs) have the potential to induce allergic reactions in certain individuals. While these proteins are generally innocuous for the majority of people, they can elicit an immune response in those with particular sensitivities. Thus, screening and prioritizing the allergenic potential of plant proteins is indispensable for the development of diagnostic tools, therapeutic interventions or medications to treat allergic reactions. However, investigating the allergenic potential of plant proteins based on experimental methods is costly and labour-intensive. Therefore, we develop StackPAP, a three-layer stacking ensemble framework for accurate large-scale identification of PAPs. In StackPAP, at the first layer, we conducted a comprehensive analysis of an extensive set of feature descriptors. Subsequently, we selected and fused five potential sequence-based feature descriptors, including amphiphilic pseudo-amino acid composition, dipeptide deviation from expected mean, amino acid composition, pseudo amino acid composition and dipeptide composition. Additionally, we applied an efficient genetic algorithm (GA-SAR) to determine informative feature sets. In the second layer, 12 powerful machine learning (ML) methods, in combination with all the informative feature sets, were employed to construct a pool of base classifiers. Finally, 13 potential base classifiers were selected using the GA-SAR method and combined to develop the final meta-classifier. Our experimental results revealed the promising prediction performance of StackPAP, with an accuracy, Matthew’s correlation coefficient and AUC of 0.984, 0.969 and 0.993, respectively, as judged by the independent test dataset. In conclusion, both cross-validation and independent test results indicated the superior performance of StackPAP compared with several ML-based classifiers. To accelerate the identification of the allergenicity of plant proteins, we developed a user-friendly web server for StackPAP (https://pmlabqsar.pythonanywhere.com/StackPAP). We anticipate that StackPAP will be an efficient and useful tool for rapidly screening PAPs from a vast number of plant proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一木发布了新的文献求助10
1秒前
kk应助饱满的棒棒糖采纳,获得10
2秒前
Lucas应助风趣的黑夜采纳,获得10
2秒前
huangjs完成签到,获得积分10
3秒前
nn应助keke采纳,获得10
4秒前
JSM发布了新的文献求助50
7秒前
alkaid33完成签到,获得积分10
8秒前
zhq完成签到,获得积分10
9秒前
9秒前
jianguo发布了新的文献求助10
9秒前
9秒前
PPPPP星星完成签到,获得积分10
10秒前
深情安青应助陈龙采纳,获得10
10秒前
12秒前
14秒前
寒冷的奇异果完成签到,获得积分10
14秒前
大模型应助等你下课采纳,获得10
15秒前
温暖发布了新的文献求助10
15秒前
15秒前
mouxq发布了新的文献求助10
19秒前
乔采柳发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
25秒前
kingwill应助要减肥含灵采纳,获得20
26秒前
等你下课发布了新的文献求助10
27秒前
陈龙发布了新的文献求助10
27秒前
Shantx完成签到,获得积分10
28秒前
zhang568完成签到,获得积分10
28秒前
风趣的寻凝应助ykiiii采纳,获得10
29秒前
领导范儿应助烟沙采纳,获得10
31秒前
31秒前
风趣的黑夜完成签到,获得积分20
31秒前
orixero应助窦长昕采纳,获得10
32秒前
llf应助充满怪兽的世界采纳,获得10
34秒前
37秒前
清风完成签到 ,获得积分10
37秒前
寒冷的煜祺完成签到,获得积分10
39秒前
摩卡摩卡完成签到,获得积分10
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942373
求助须知:如何正确求助?哪些是违规求助? 3487634
关于积分的说明 11044494
捐赠科研通 3218054
什么是DOI,文献DOI怎么找? 1778725
邀请新用户注册赠送积分活动 864373
科研通“疑难数据库(出版商)”最低求助积分说明 799438