SSER: Semi-Supervised Emotion Recognition Based on Triplet Loss and Pseudo Label

计算机科学 情绪识别 心理学 语音识别 认知心理学 模式识别(心理学) 人工智能
作者
Lili Pan,Weizhi Shao,Siyu Xiong,Qianhui Lei,Shiqi Huang,Eric J. Beckman,Qinghua Hu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:: 111595-111595
标识
DOI:10.1016/j.knosys.2024.111595
摘要

Recently, emotion recognition from facial expressions has achieved unprecedented accuracy with the development of deep learning. Despite this progress, most existing emotion recognition methods are supervised and thus require extensive annotation. This issue is particularly pronounced in continuous domain datasets where annotation costs are very high. Furthermore, discrete domain datasets containing specific poses are too uniform to reflect complex and actual emotions. Existing methods that employ classification loss pay little attention to image similarity, making it difficult to distinguish similar emotions. To improve the learning ability for image similarity and reduce the annotation cost of continuous domain datasets, this research proposes a Semi-Supervised Emotion Recognition (SSER) method, which incorporates Activation-matrix Triplet loss (AMT loss) and pseudo label with Complementary Information (CI label). Specifically, the AMT loss is constructed by encoding multiple activation channels of an image as a matrix, which are utilized to capture the image similarity. The CI label firstly adopts the coupling effect of the complementary information from images and the multi-stage model for SSL to obtain high-confidence pseudo-labels. Then, entropy minimization and consistency regularization are used to improve the accuracy of pseudo labels. The SSER is evaluated on continuous domain datasets (AFEW-VA and AFF-Wild) and discrete domain datasets (FER2013 and CK+). The experimental results demonstrate that the SSER combined with AMT loss and CI label makes improvement for emotion recognition on continuous domain datasets, meanwhile the SSER is also desirable and effective for emotion recognition on discrete domain datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC发布了新的文献求助10
刚刚
1秒前
07完成签到,获得积分10
2秒前
丹丹丹发布了新的文献求助10
2秒前
闻风听雨发布了新的文献求助10
3秒前
3秒前
健康的涔发布了新的文献求助22
4秒前
文静发布了新的文献求助10
4秒前
欣喜的冰薇完成签到,获得积分10
5秒前
开心薯片完成签到,获得积分10
7秒前
SY发布了新的文献求助10
8秒前
FashionBoy应助布鲁采纳,获得10
8秒前
明月发布了新的文献求助10
8秒前
NexusExplorer应助雨诺采纳,获得10
9秒前
席松完成签到,获得积分10
10秒前
李爱国应助发光的萤火虫采纳,获得10
10秒前
Cloud发布了新的文献求助10
10秒前
云雨完成签到 ,获得积分10
10秒前
11秒前
mhlxxx发布了新的文献求助10
11秒前
文静完成签到,获得积分10
11秒前
yangling0124完成签到,获得积分10
11秒前
海东来应助研友_48yxXZ采纳,获得30
11秒前
深情安青应助欣喜的冰薇采纳,获得10
12秒前
妮妮完成签到,获得积分20
12秒前
小蘑菇应助Geodada采纳,获得10
12秒前
12秒前
高贵邓邓发布了新的文献求助20
13秒前
13秒前
orixero应助帅气的璎采纳,获得10
14秒前
soap完成签到,获得积分10
14秒前
骐骥发布了新的文献求助10
15秒前
16秒前
CC完成签到,获得积分10
17秒前
18秒前
19秒前
叶问儿完成签到,获得积分10
19秒前
fal发布了新的文献求助10
19秒前
20秒前
20秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063641
求助须知:如何正确求助?哪些是违规求助? 3602110
关于积分的说明 11439939
捐赠科研通 3325242
什么是DOI,文献DOI怎么找? 1827956
邀请新用户注册赠送积分活动 898473
科研通“疑难数据库(出版商)”最低求助积分说明 819084