亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Few-shot learning based on prototype rectification with a self-attention mechanism

整改 机制(生物学) 计算机科学 弹丸 人工智能 一次性 人机交互 电气工程 化学 物理 机械工程 工程类 有机化学 量子力学 电压
作者
Peng Zhao,Liang Wang,Xuyang Zhao,Huiting Liu,Xia Ji
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123586-123586 被引量:5
标识
DOI:10.1016/j.eswa.2024.123586
摘要

Few-shot learning (FSL) is a challenging problem. Prototype-based methods are simple and effective methods for addressing few-shot learning. Due to the lack of labeled samples, the learned class prototype in the existing prototype-based few-shot learning methods has a great deviation and cannot express the representative and discriminant characteristics of its corresponding class well. To address this problem, in this work we propose few-shot learning based on prototype rectification with a self-attention mechanism(FSL-PRS). To learn more unbiased and discriminative class prototypes, FSL-PRS takes the support set and the query set as a whole and learns task-related features from the features extracted from pretrained backbone networks with a self-attention mechanism. Then, the learned task-related features are utilized to compute the original class prototypes and predict a pseudo label and confidence for each query sample. The query samples with high confidence are incorporated into the support set to rectify the class prototypes. We hope that the learned class prototype can better highlight the class significance. Therefore, a class significance learning module is designed for making the learned class prototypes more discriminative. Different from prior works, we take the support set and the query set as a whole to learn task-related features with a self-attention mechanism, which not only alleviates the negative effect of distribution differences between the support set and query set but also fuses global context information to enhance features for FSL. We conduct comprehensive experiments on four benchmark datasets widely adopted in few-shot learning. The experimental results demonstrate that the FSL-PRS achieves state-of-the-art performance, which validates its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jinny发布了新的文献求助10
1秒前
天天快乐应助你听得到采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
CodeCraft应助科研通管家采纳,获得10
26秒前
依然灬聆听完成签到,获得积分10
33秒前
小孟吖完成签到 ,获得积分10
40秒前
1分钟前
1分钟前
++完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
天空之城发布了新的文献求助10
1分钟前
Jinny发布了新的文献求助10
1分钟前
小蘑菇应助天空之城采纳,获得10
1分钟前
gkhsdvkb完成签到 ,获得积分10
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
淡然的金针菇完成签到,获得积分10
3分钟前
zrm完成签到,获得积分10
3分钟前
yuyu完成签到,获得积分10
3分钟前
3分钟前
herococa应助highestant采纳,获得40
3分钟前
赵田完成签到 ,获得积分10
3分钟前
3分钟前
你听得到发布了新的文献求助10
3分钟前
沿途东行完成签到 ,获得积分10
4分钟前
highestant完成签到,获得积分20
4分钟前
浮云发布了新的文献求助30
4分钟前
HY完成签到 ,获得积分10
4分钟前
4分钟前
caca完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
醉熏的灵完成签到 ,获得积分10
6分钟前
贪玩的访风完成签到 ,获得积分10
6分钟前
SCINEXUS完成签到,获得积分0
6分钟前
浮云发布了新的文献求助30
6分钟前
Panda2022完成签到,获得积分10
8分钟前
群山完成签到 ,获得积分10
8分钟前
Panda2022发布了新的文献求助10
8分钟前
852应助科研通管家采纳,获得10
8分钟前
英姑应助科研通管家采纳,获得10
8分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777597
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212752
捐赠科研通 3038301
什么是DOI,文献DOI怎么找? 1667298
邀请新用户注册赠送积分活动 798103
科研通“疑难数据库(出版商)”最低求助积分说明 758215