ProSTformer: Progressive Space-Time Self-Attention Model for Short-Term Traffic Flow Forecasting

亲密度 流量(计算机网络) 计算 计算机科学 数据挖掘 流量(数学) 空格(标点符号) 比例(比率) 人工智能 地理 算法 数学 地图学 计算机安全 数学分析 操作系统 几何学
作者
Xiao Yan,Xianghua Gan,Jingjing Tang,Dapeng Zhang,Rui Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 10802-10816 被引量:18
标识
DOI:10.1109/tits.2024.3367754
摘要

Traffic flow forecasting is essential and challenging to intelligent city management and public safety. In this paper, we attempt to use a pure self-attention method in traffic flow forecasting. However, when dealing with input sequences, including large-scale regions' historical records, it is difficult for the self-attention mechanism to focus on the most relevant ones for forecasting. To address this issue, we design a progressive space-time self-attention mechanism named ProSTformer, which can reduce self-attention computation times from thousands to tens. Our design is based on two pieces of prior knowledge in the traffic flow forecasting literature: (i) spatiotemporal dependencies can be factorized into spatial and temporal dependencies; (ii) adjacent regions have more influences than distant regions, and temporal characteristics of closeness, period and trend are more important than crossed relations between them. Our ProSTformer has two characteristics. First, each block in ProSTformer highlights the unique dependencies, ProSTformer progressively focuses on spatial dependencies from local to global regions, on temporal dependencies from closeness, period and trend to crossed relations between them, and on external dependencies such as weather conditions, temperature and day-of-week. Second, we use the Tensor Rearranging technique to force the model to compute self-attention only to adjacent regions and to the unique temporal characteristic. Then, we use the Patch Merging technique to greatly reduce self-attention computation times to distant regions and crossed temporal relations. We evaluate ProSTformer on two traffic datasets and find that it performs better than sixteen baseline models. The code is available at https://github.com/yanxiao1930/ProSTformer_code/tree/main.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
老大黎明关注了科研通微信公众号
9秒前
浮游应助能干的月光采纳,获得10
12秒前
xxxxxxxx完成签到 ,获得积分10
12秒前
YE发布了新的文献求助10
14秒前
20秒前
Tanxaio完成签到,获得积分20
22秒前
23秒前
25秒前
tiamo完成签到,获得积分10
25秒前
26秒前
lylyzhl发布了新的文献求助10
32秒前
郦初蓝发布了新的文献求助10
32秒前
33秒前
坚强百招完成签到 ,获得积分10
34秒前
kk关注了科研通微信公众号
34秒前
AXLL发布了新的文献求助10
35秒前
充电宝应助ceeray23采纳,获得20
39秒前
所所应助老大黎明采纳,获得10
42秒前
许飞完成签到 ,获得积分10
45秒前
爆米花应助科研通管家采纳,获得10
45秒前
cc应助科研通管家采纳,获得10
45秒前
顾矜应助科研通管家采纳,获得30
45秒前
45秒前
情怀应助科研通管家采纳,获得10
45秒前
CodeCraft应助科研通管家采纳,获得30
45秒前
达雨应助科研通管家采纳,获得10
45秒前
英姑应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
达雨应助科研通管家采纳,获得10
46秒前
46秒前
慕青应助科研通管家采纳,获得10
46秒前
脑洞疼应助科研通管家采纳,获得10
46秒前
科目三应助科研通管家采纳,获得10
46秒前
NexusExplorer应助科研通管家采纳,获得10
46秒前
在水一方应助科研通管家采纳,获得10
46秒前
达雨应助科研通管家采纳,获得10
46秒前
钼yanghua应助科研通管家采纳,获得10
46秒前
orixero应助科研通管家采纳,获得30
46秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560834
求助须知:如何正确求助?哪些是违规求助? 4646178
关于积分的说明 14677685
捐赠科研通 4587278
什么是DOI,文献DOI怎么找? 2516949
邀请新用户注册赠送积分活动 1490355
关于科研通互助平台的介绍 1461160