亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Micro Transfer Learning Mechanism for Cross-Domain Equipment RUL Prediction

机制(生物学) 领域(数学分析) 计算机科学 学习迁移 人工智能 数学分析 哲学 数学 认识论
作者
Sheng Xiang,Penghua Li,Jun Luo,Yi Qin
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:8
标识
DOI:10.1109/tase.2024.3366288
摘要

Transfer learning generally addresses to reduce the distribution distance between source-domain and target-domain. However, it is unreasonable to use a distribution to represent the life-cycle signals as they are always time-varying, and the improper assumption affects the efficacy of transfer remaining useful life (RUL) prediction. To fill this gap, this research proposes a micro transfer learning mechanism for multiple differentiated distributions, and a transfer RUL prediction model is constructed. First, a multi-cellular long short-term memory (MCLSTM) neural network is applied to obtain multiple differentiated distributions of the monitoring data at some point. Then the domain adversarial mechanism is used to achieve the knowledge transfer of multiple differentiated distributions at the cell level. Furthermore, an active screen mechanism is designed for weighting the domain discrimination losses of multiple differentiated distributions. Through the transfer RUL prediction experiments on aero-engines and actual wind turbine gearboxes, the superiority of this model over the advanced transfer prediction models is verified. Note to Practitioners —The work is motivated by the accuracy reduction problem caused by the time-varying characteristics of life-cycle data in the cross domain equipment RUL prediction scenario, where a fixed single distribution is difficult to cover the full life-cycle data. This article proposes a micro transfer learning mechanism containing multiple differentiated distributions, and a novel transfer RUL prediction model based on the mechanism is constructed for solving the problem caused by the time-varying characteristics of life-cycle data. There are four steps for implementing this method in practice: 1) collecting the full-life cycle signals of historical equipment; 2) modeling the degradation curves of equipment by MCLSTM; 3) solving the cross domain RUL prediction by narrowing the distributions of degradation curves by the micro transfer learning mechanism; and 4) making prognostics for new equipment. The novelty is that the proposed mechanism can self-adaptively align multiple differentiated subspaces of the source domain and the target domain, that is, it can adaptively extract the domain invariant features over time. As a result, the proposed method has two main advantages: 1) capable of characterizing the degradation processes of different equipment; and 2) superior prognostic results on cross domain RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激动的似狮完成签到,获得积分10
5秒前
Akim应助奋斗夏旋采纳,获得10
14秒前
领导范儿应助嘟嘟采纳,获得10
20秒前
23秒前
奋斗夏旋发布了新的文献求助10
28秒前
32秒前
Hiromi发布了新的文献求助10
37秒前
bc应助科研通管家采纳,获得10
50秒前
54秒前
DrCuiTianjin完成签到 ,获得积分10
1分钟前
yanzinie发布了新的文献求助10
1分钟前
奋斗夏旋完成签到,获得积分10
1分钟前
脑洞疼应助奋斗夏旋采纳,获得10
1分钟前
1分钟前
桐桐应助酷酷一笑采纳,获得10
1分钟前
嘟嘟发布了新的文献求助10
1分钟前
酷酷一笑完成签到,获得积分10
2分钟前
2分钟前
852应助嘟嘟采纳,获得10
2分钟前
酷酷一笑发布了新的文献求助10
2分钟前
分析完成签到 ,获得积分10
2分钟前
2分钟前
bc应助科研通管家采纳,获得20
2分钟前
奋斗夏旋发布了新的文献求助10
2分钟前
3分钟前
油条发布了新的文献求助10
3分钟前
麻辣烫完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
烟花应助啊啊啊啊采纳,获得10
5分钟前
5分钟前
5分钟前
啊啊啊啊发布了新的文献求助10
5分钟前
JSJ发布了新的文献求助10
5分钟前
JSJ完成签到,获得积分10
5分钟前
充电宝应助JSJ采纳,获得10
5分钟前
6分钟前
嘟嘟发布了新的文献求助10
6分钟前
bc应助科研通管家采纳,获得100
6分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804187
求助须知:如何正确求助?哪些是违规求助? 3349026
关于积分的说明 10341070
捐赠科研通 3065173
什么是DOI,文献DOI怎么找? 1682947
邀请新用户注册赠送积分活动 808557
科研通“疑难数据库(出版商)”最低求助积分说明 764600