GCDN-Net: Garbage classifier deep neural network for recyclable urban waste management

垃圾 人工智能 分类器(UML) 计算机科学 人工神经网络 环境科学 工程类 废物管理
作者
Md. Mosarrof Hossen,Azad Ashraf,Mazhar Hasan,Molla E. Majid,Mohammad Nashbat,Saad Bin Abul Kashem,Ali K. Ansaruddin Kunju,Amith Khandakar,Sakib Mahmud,Muhammad E. H. Chowdhury
出处
期刊:Waste Management [Elsevier BV]
卷期号:174: 439-450 被引量:17
标识
DOI:10.1016/j.wasman.2023.12.014
摘要

The escalating waste volume due to urbanization and population growth has underscored the need for advanced waste sorting and recycling methods to ensure sustainable waste management. Deep learning models, adept at image recognition tasks, offer potential solutions for waste sorting applications. These models, trained on extensive waste image datasets, possess the ability to discern unique features of diverse waste types. Automating waste sorting hinges on robust deep learning models capable of accurately categorizing a wide range of waste types. In this study, a multi-stage machine learning approach is proposed to classify different waste categories using the "Garbage In, Garbage Out" (GIGO) dataset of 25,000 images. The novel Garbage Classifier Deep Neural Network (GCDN-Net) is introduced as a comprehensive solution, adept in both single-label and multi-label classification tasks. Single-label classification distinguishes between garbage and non-garbage images, while multi-label classification identifies distinct garbage categories within single or multiple images. The performance of GCDN-Net is rigorously evaluated and compared against state-of-the-art waste classification methods. Results demonstrate GCDN-Net's excellence, achieving 95.77% accuracy, 95.78% precision, 95.77% recall, 95.77% F1-score, and 95.54% specificity when classifying waste images, outperforming existing models in single-label classification. In multi-label classification, GCDN-Net attains an overall Mean Average Precision (mAP) of 0.69 and an F1-score of 75.01%. The reliability of network performance is affirmed through saliency map-based visualization generated by Score-CAM (class activation mapping). In conclusion, deep learning-based models exhibit efficacy in categorizing diverse waste types, paving the way for automated waste sorting and recycling systems that can mitigate costs and processing times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助Lxy采纳,获得10
刚刚
Neyra发布了新的文献求助10
刚刚
爬山虎完成签到,获得积分10
1秒前
1秒前
cdercder应助nns采纳,获得10
1秒前
capricorn发布了新的文献求助10
1秒前
hode完成签到,获得积分20
2秒前
zzz发布了新的文献求助10
2秒前
宝玉发布了新的文献求助10
3秒前
优美飞薇完成签到,获得积分10
3秒前
4秒前
4秒前
贪玩果汁发布了新的文献求助10
5秒前
csy驳回了科目三应助
5秒前
5秒前
神奇女侠发布了新的文献求助10
5秒前
一苇以航发布了新的文献求助10
5秒前
5秒前
斯文败类应助紧张的店员采纳,获得10
7秒前
7秒前
111发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
暗香浮动月黄昏完成签到,获得积分10
10秒前
sakuraking发布了新的文献求助10
10秒前
adamhe完成签到,获得积分20
10秒前
海底完成签到,获得积分10
10秒前
10秒前
大个应助zgz732采纳,获得10
10秒前
10秒前
zzz完成签到,获得积分10
11秒前
11秒前
酷酷的老太完成签到 ,获得积分20
11秒前
11秒前
LDC111发布了新的文献求助10
12秒前
小怡子发布了新的文献求助10
13秒前
00发布了新的文献求助10
14秒前
研友_VZG7GZ应助9xixixixixixixi采纳,获得10
14秒前
紧张的店员完成签到,获得积分10
14秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
HVAC 1 toolkit : a toolkit for primary HVAC system energy calculation 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839133
求助须知:如何正确求助?哪些是违规求助? 3381599
关于积分的说明 10518877
捐赠科研通 3100943
什么是DOI,文献DOI怎么找? 1707880
邀请新用户注册赠送积分活动 821988
科研通“疑难数据库(出版商)”最低求助积分说明 773084