An optimized CNN-BiLSTM network for bearing fault diagnosis under multiple working conditions with limited training samples

计算机科学 超参数 粒子群优化 断层(地质) 卷积神经网络 人工智能 模式识别(心理学) 人工神经网络 机器学习 地质学 地震学
作者
Baoye Song,Yiyan Liu,Jingzhong Fang,Weibo Liu,Maiying Zhong,Xiaohui Liu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:574: 127284-127284 被引量:64
标识
DOI:10.1016/j.neucom.2024.127284
摘要

Aiming at limitations in fully exploiting the temporal correlation features of the original signals, expensive cost in parameter tuning, and difficulties in obtaining sufficient training data under multiple working conditions, this paper proposes an optimized Convolutional Neural Network (CNN) with Bi-directional Long Short-Term Memory (BiLSTM) scheme for bearing fault diagnosis under multiple working conditions with limited training samples. A CNN-BiLSTM network is developed to obtain precise fault features and high detection accuracy by extracting high-dimensional and temporal correlation features of raw vibration signals. An improved particle swarm optimization (PSO) algorithm is leveraged to optimize the training hyperparameters of the CNN-BiLSTM network for further advances in fault diagnosis performance. The optimized CNN-BiLSTM network is regarded as a pre-trained model and transferred to new working conditions to achieve satisfactory fault diagnosis results based on limited training samples. Several comprehensive experiments are implemented to confirm the excellent performance of the proposed schemes, especially efficiently addressing the challenges of model training and fault diagnosis in new working conditions with scarce samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静妙菡发布了新的文献求助10
1秒前
1秒前
1秒前
爱吃香菜完成签到,获得积分10
1秒前
达系完成签到,获得积分20
2秒前
翁瑶婧发布了新的文献求助10
3秒前
请叫我风吹麦浪应助L2采纳,获得10
4秒前
mujinxin完成签到,获得积分10
4秒前
Ella发布了新的文献求助10
6秒前
diaoyulao完成签到,获得积分10
6秒前
7秒前
含蓄朋友发布了新的文献求助10
7秒前
9秒前
王灿灿完成签到,获得积分10
9秒前
leodu完成签到,获得积分10
9秒前
无花果应助Guo1020181采纳,获得10
10秒前
zheng完成签到,获得积分10
10秒前
情怀应助学习的小崽采纳,获得10
10秒前
赘婿应助hhh采纳,获得10
13秒前
T拐拐发布了新的文献求助10
13秒前
FashionBoy应助陈瑶采纳,获得30
14秒前
111966完成签到,获得积分10
17秒前
小袁完成签到 ,获得积分10
17秒前
18秒前
Arctic完成签到,获得积分10
22秒前
23秒前
Arctic发布了新的文献求助10
25秒前
25秒前
眼睛大雨筠应助聪慧芷巧采纳,获得10
26秒前
lokiki鸭发布了新的文献求助50
27秒前
daisies应助科研通管家采纳,获得20
27秒前
27秒前
Owen应助科研通管家采纳,获得10
27秒前
打打应助科研通管家采纳,获得10
27秒前
orixero应助科研通管家采纳,获得10
27秒前
27秒前
大模型应助科研通管家采纳,获得10
27秒前
思源应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964928
求助须知:如何正确求助?哪些是违规求助? 3510331
关于积分的说明 11152889
捐赠科研通 3244632
什么是DOI,文献DOI怎么找? 1792481
邀请新用户注册赠送积分活动 873872
科研通“疑难数据库(出版商)”最低求助积分说明 804007