亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep bi-directional information-empowered ship trajectory prediction for maritime autonomous surface ships

深度学习 循环神经网络 人工神经网络 计算机科学 弹道 人工智能 序列(生物学) 机器学习 物理 天文 生物 遗传学
作者
Huanhuan Li,Wenbin Xing,Hang Jiao,Zaili Yang,Yan Li
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:181: 103367-103367 被引量:8
标识
DOI:10.1016/j.tre.2023.103367
摘要

It is critical to have accurate ship trajectory prediction for collision avoidance and intelligent traffic management of manned ships and emerging Maritime Autonomous Surface Ships (MASS). Deep learning methods for accurate prediction based on AIS data have emerged as a contemporary maritime transportation research focus. However, concerns about its accuracy and computational efficiency widely exist across both academic and industrial sectors, necessitating the discovery of new solutions. This paper aims to develop a new prediction approach called Deep Bi-Directional Information-Empowered (DBDIE) by utilising integrated multiple networks and an attention mechanism to address the above issues. The new DBDIE model extracts valuable features by fusing the Bi-directional Long Short-Term Memory (Bi-LSTM) and the Bi-directional Gated Recurrent Unit (Bi-GRU) neural networks. Additionally, the weights of the two bi-directional units are optimised using an attention mechanism, and the final prediction results are obtained through a weight self-adjustment mechanism. The effectiveness of the proposed model is verified through comprehensive comparisons with state-of-the-art deep learning methods, including Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Bi-LSTM, Bi-GRU, Sequence to Sequence (Seq2Seq), and Transformer neural networks. The experimental results demonstrate that the new DBDIE model achieves the most satisfactory prediction outcomes than all other classical methods, providing a new solution to improving the accuracy and effectiveness of predicting ship trajectories, which becomes increasingly important in the era of the safe navigation of mixed manned ships and MASS. As a result, the findings can aid the development and implementation of proactive preventive measures to avoid collisions, enhance maritime traffic management efficiency, and ensure maritime safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
29秒前
39秒前
olivia完成签到,获得积分10
50秒前
从容芮应助体贴花卷采纳,获得30
51秒前
56秒前
anan应助Wei采纳,获得10
1分钟前
1分钟前
宝贝丫头完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
从容芮应助体贴花卷采纳,获得30
1分钟前
科研duangduang完成签到,获得积分10
2分钟前
2分钟前
zwang688完成签到,获得积分10
3分钟前
3分钟前
Wei发布了新的文献求助10
3分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
Iso发布了新的文献求助10
5分钟前
文献搬运工完成签到 ,获得积分10
5分钟前
Iso完成签到,获得积分10
5分钟前
领导范儿应助科研通管家采纳,获得10
5分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
魔幻的忆秋完成签到,获得积分20
6分钟前
howgoods完成签到 ,获得积分10
6分钟前
肉丸完成签到 ,获得积分10
6分钟前
6分钟前
僦是卜够完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 9th 400
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Critique du De mundo de Thomas White 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4392398
求助须知:如何正确求助?哪些是违规求助? 3882684
关于积分的说明 12090212
捐赠科研通 3526701
什么是DOI,文献DOI怎么找? 1935319
邀请新用户注册赠送积分活动 976370
科研通“疑难数据库(出版商)”最低求助积分说明 874059