Self-Supervised Learning for Improved Optical Coherence Tomography Detection of Macular Telangiectasia Type 2

光学相干层析成像 人工智能 医学 黄斑毛细血管扩张 接收机工作特性 计算机科学 卷积神经网络 模式识别(心理学) 机器学习 眼科 视网膜 荧光血管造影
作者
Shahrzad Gholami,Lea Scheppke,Meghana Kshirsagar,Yue Wu,Rahul Dodhia,Roberto Bonelli,Irene Leung,Ferenc B. Sallo,Alyson Muldrew,Catherine Jamison,Tünde Pető,Juan Lavista Ferres,William B. Weeks,Martin Friedlander,Aaron Lee,Mali Okada,Alain Gaudric,Steven D. Schwartz,Ian J. Constable,Lawrence A. Yannuzzi
出处
期刊:JAMA Ophthalmology [American Medical Association]
卷期号:142 (3): 226-226 被引量:7
标识
DOI:10.1001/jamaophthalmol.2023.6454
摘要

Importance Deep learning image analysis often depends on large, labeled datasets, which are difficult to obtain for rare diseases. Objective To develop a self-supervised approach for automated classification of macular telangiectasia type 2 (MacTel) on optical coherence tomography (OCT) with limited labeled data. Design, Setting, and Participants This was a retrospective comparative study. OCT images from May 2014 to May 2019 were collected by the Lowy Medical Research Institute, La Jolla, California, and the University of Washington, Seattle, from January 2016 to October 2022. Clinical diagnoses of patients with and without MacTel were confirmed by retina specialists. Data were analyzed from January to September 2023. Exposures Two convolutional neural networks were pretrained using the Bootstrap Your Own Latent algorithm on unlabeled training data and fine-tuned with labeled training data to predict MacTel (self-supervised method). ResNet18 and ResNet50 models were also trained using all labeled data (supervised method). Main Outcomes and Measures The ground truth yes vs no MacTel diagnosis is determined by retinal specialists based on spectral-domain OCT. The models’ predictions were compared against human graders using accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), area under precision recall curve (AUPRC), and area under the receiver operating characteristic curve (AUROC). Uniform manifold approximation and projection was performed for dimension reduction and GradCAM visualizations for supervised and self-supervised methods. Results A total of 2636 OCT scans from 780 patients with MacTel and 131 patients without MacTel were included from the MacTel Project (mean [SD] age, 60.8 [11.7] years; 63.8% female), and another 2564 from 1769 patients without MacTel from the University of Washington (mean [SD] age, 61.2 [18.1] years; 53.4% female). The self-supervised approach fine-tuned on 100% of the labeled training data with ResNet50 as the feature extractor performed the best, achieving an AUPRC of 0.971 (95% CI, 0.969-0.972), an AUROC of 0.970 (95% CI, 0.970-0.973), accuracy of 0.898%, sensitivity of 0.898, specificity of 0.949, PPV of 0.935, and NPV of 0.919. With only 419 OCT volumes (185 MacTel patients in 10% of labeled training dataset), the ResNet18 self-supervised model achieved comparable performance, with an AUPRC of 0.958 (95% CI, 0.957-0.960), an AUROC of 0.966 (95% CI, 0.964-0.967), and accuracy, sensitivity, specificity, PPV, and NPV of 90.2%, 0.884, 0.916, 0.896, and 0.906, respectively. The self-supervised models showed better agreement with the more experienced human expert graders. Conclusions and Relevance The findings suggest that self-supervised learning may improve the accuracy of automated MacTel vs non-MacTel binary classification on OCT with limited labeled training data, and these approaches may be applicable to other rare diseases, although further research is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助sugar采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
1秒前
些许风霜罢了完成签到,获得积分20
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
jane完成签到 ,获得积分10
3秒前
3秒前
Ly发布了新的文献求助10
6秒前
冰魂应助义气的钥匙采纳,获得10
7秒前
郜幼枫完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
9秒前
10秒前
11秒前
13秒前
科研通AI5应助义气的钥匙采纳,获得10
13秒前
嗡嗡完成签到,获得积分10
14秒前
小高同学发布了新的文献求助10
14秒前
Clarenceed完成签到,获得积分10
14秒前
nancy发布了新的文献求助10
15秒前
AlexLee发布了新的文献求助10
15秒前
15秒前
完美世界应助又晴采纳,获得30
16秒前
eth完成签到 ,获得积分10
16秒前
sugar发布了新的文献求助10
16秒前
SciGPT应助小高同学采纳,获得10
18秒前
852应助Ricardo采纳,获得10
19秒前
22秒前
某某完成签到 ,获得积分10
22秒前
23秒前
24秒前
Lucas应助还单身的冰旋采纳,获得30
24秒前
动漫大师发布了新的文献求助10
25秒前
AlexLee完成签到,获得积分10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779404
求助须知:如何正确求助?哪些是违规求助? 3324954
关于积分的说明 10220585
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522