CFD study of nail penetration induced thermal runaway propagation in Lithium-Ion battery cell pack

热失控 电池组 材料科学 机械 前沿 热的 GSM演进的增强数据速率 电池(电) 结构工程 工程类 复合材料 热力学 物理 功率(物理) 电信
作者
Hosanna Uwitonze,Aleksey Ni,Vijay Mohan Nagulapati,Heehyang Kim,Hankwon Lim
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:243: 122649-122649 被引量:7
标识
DOI:10.1016/j.applthermaleng.2024.122649
摘要

Li-ion batteries have gained massive momentum due to their potential to hold the greatest energy density, but they suffer serious safety problems related to thermal runaway and flammability of the electrolyte components. A three-dimensional numerical modeling of Li-ion pouch cell-based battery pack is proposed in this study. The proposed three-dimensional integrated multiphysics model was validated with the experimental data, and used to investigate the impact of nail penetration depths (20 mm, 15 mm and 12.5 mm) and defect location effects on battery pack thermal runaway. The locations of the envisaged defects are at the upper, middle, lower sides of battery's lateral edge, and middle of the bottom edge. The study showed that battery pack temperature evolution due to thermal runaway is substantially affected by both internal short circuit (ISC) size and defect locations. The thermal runaway with ISCs induced at upper, middle and lower sides of battery's lateral edge have been found faster than that of ISC induced in the middle of the bottom edge. The thermal runaway inception for ISCs induced in the middle of the bottom edge lags behind 10 s when compared to thermal runaway inceptions for ISC induced at the upper, middle and lower sides of battery's lateral edge. The study also investigated the effect of convective heat transfer coefficient on suppressing the thermal runaway propagation, and a convective heat transfer coefficient of 500W/m2.K effectively suppressed thermal runaway and minimize its respective effects. The study provides insights on vulnerable sides of battery in the pack and the corresponding failure behaviors, such insights are valuable for Li-ion cell design and thermal management system design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
指尖心事完成签到,获得积分10
刚刚
Xx关闭了Xx文献求助
1秒前
炙热秋天完成签到,获得积分10
1秒前
科研通AI2S应助zwenng采纳,获得10
1秒前
YY完成签到,获得积分10
1秒前
小蘑菇应助逃不了采纳,获得10
2秒前
仁爱的寻凝完成签到,获得积分20
2秒前
2秒前
zxcharm完成签到,获得积分10
2秒前
科研通AI5应助LLZ采纳,获得10
3秒前
稳重的雅绿完成签到 ,获得积分20
3秒前
3秒前
fei发布了新的文献求助10
3秒前
陌路完成签到,获得积分10
3秒前
vv完成签到,获得积分10
3秒前
笑笑发布了新的文献求助10
4秒前
胡晓平完成签到,获得积分10
5秒前
5秒前
mss12138完成签到,获得积分10
6秒前
zp完成签到,获得积分10
6秒前
Yohann完成签到,获得积分10
6秒前
明天还熬夜吗完成签到,获得积分10
6秒前
zanzan完成签到,获得积分10
6秒前
THL完成签到,获得积分10
6秒前
ning完成签到,获得积分10
7秒前
8秒前
挽风完成签到 ,获得积分10
8秒前
别赋完成签到,获得积分10
8秒前
城九寒发布了新的文献求助30
8秒前
minmin完成签到,获得积分10
9秒前
9秒前
sad发布了新的文献求助10
9秒前
Sssmmmyy发布了新的文献求助10
9秒前
9秒前
BESTZJ完成签到,获得积分10
9秒前
糖糖谈糖糖完成签到,获得积分10
10秒前
10秒前
元小夏完成签到,获得积分10
11秒前
斯文如娆完成签到 ,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792697
求助须知:如何正确求助?哪些是违规求助? 3336961
关于积分的说明 10283148
捐赠科研通 3053940
什么是DOI,文献DOI怎么找? 1675709
邀请新用户注册赠送积分活动 803742
科研通“疑难数据库(出版商)”最低求助积分说明 761533