StainSWIN: Vision transformer-based stain normalization for histopathology image analysis

计算机科学 规范化(社会学) 人工智能 计算机视觉 变压器 模式识别(心理学) 电压 物理 量子力学 社会学 人类学
作者
Elif Baykal Kablan,Selen Ayas
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108136-108136 被引量:1
标识
DOI:10.1016/j.engappai.2024.108136
摘要

Stain normalization is a key preprocessing step that has been shown to significantly improve the segmentation and classification performance of computer-aided diagnosis (CAD) systems. In recent advancements, numerous approaches have demonstrated significant progress in the domain of stain normalization; however, the most of these approaches are based on Generative Adversarial Networks. In this paper, we propose a novel vision transformer-based model, termed as StainSWIN, that combines the strengths of swin transformer and the architecture of super resolution to achieve improved performance in stain normalization task. The key concept behind the StainSWIN is the utilization of swin transformer blocks that exploit content-based interactions to capture long-range dependencies. The proposed model is equipped with two key blocks, including residual stain swin block (ResStainSWIN) and swin transformer block (STB). The StainSWIN has a residual super resolution architecture, in which the high-level features, extracted by STB, are combined to ResStainSWIN block. The performance of the StainSWIN model was compared with other state-of-the-art methods on a commonly used MITOS-ATYPIA14 histopathology dataset. The StainSWIN outperformed other methods in stain normalization with a large margin in terms of PSNR, SSIM, and RMSE metrics. The StainSWIN model achieved PSNR of 26.667 ± 3.492, SSIM of 0.943 ± 0.037, and RMSE of 6.206 ± 1.973. Additionally, we evaluated the model's impact to the segmentation performance of the MICCAI GlaS'16 dataset. The results demonstrates a 4.3% improvement in segmentation accuracy, attributed to a reduction in stain color variation. The proposed method has the ability to greatly assist CAD systems in maintaining consistent performance despite color variations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯情女大完成签到 ,获得积分10
刚刚
哩蒜呐发布了新的文献求助10
刚刚
刚刚
科研助手6应助迷你的冰巧采纳,获得10
刚刚
刚刚
刚刚
1秒前
momo完成签到,获得积分10
1秒前
落樱幻梦染星尘完成签到,获得积分10
1秒前
可爱的函函应助li采纳,获得10
2秒前
2秒前
暴躁的阁完成签到,获得积分10
2秒前
man完成签到 ,获得积分10
4秒前
4秒前
愤怒的绿兰完成签到,获得积分10
4秒前
科研通AI5应助酷www采纳,获得10
4秒前
4秒前
Tuniverse_发布了新的文献求助10
4秒前
7720完成签到,获得积分10
4秒前
kilig完成签到 ,获得积分10
5秒前
5秒前
清萍红檀完成签到,获得积分10
5秒前
fqpang完成签到 ,获得积分10
5秒前
6秒前
6秒前
淡淡桐发布了新的文献求助10
6秒前
无辜的笙发布了新的文献求助10
6秒前
哩蒜呐完成签到,获得积分10
7秒前
冷艳从梦发布了新的文献求助10
8秒前
8秒前
8秒前
研友_VZG7GZ应助yinyin采纳,获得10
9秒前
9秒前
JM-Li发布了新的文献求助10
10秒前
鲤鱼奇异果完成签到,获得积分10
10秒前
10秒前
10秒前
阿姊完成签到 ,获得积分10
11秒前
RTena.完成签到,获得积分10
12秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793074
求助须知:如何正确求助?哪些是违规求助? 3337816
关于积分的说明 10287022
捐赠科研通 3054320
什么是DOI,文献DOI怎么找? 1675961
邀请新用户注册赠送积分活动 803951
科研通“疑难数据库(出版商)”最低求助积分说明 761615