清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Load Forecasting and Operation Optimization of Ice-Storage Air Conditioners Based on Improved Deep-Belief Network

空调 调节器 气象学 深信不疑网络 环境科学 计算机科学 运筹学 工业工程 人工智能 工程类 人工神经网络 机械工程 环境工程 地理
作者
Mingxing Guo,Ran Lv,Zexing Miao,Fei Fei,Zhixin Fu,Enqi Wu,Lan Li,Min Wang
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:12 (3): 523-523 被引量:2
标识
DOI:10.3390/pr12030523
摘要

The prediction of cold load in ice-storage air conditioning systems plays a pivotal role in optimizing air conditioning operations, significantly contributing to the equilibrium of regional electricity supply and demand, mitigating power grid stress, and curtailing energy consumption in power grids. Addressing the issues of minimal correlation between input and output data and the suboptimal prediction accuracy inherent in traditional deep-belief neural-network models, this study introduces an enhanced deep-belief neural-network combination prediction model. This model is refined through an advanced genetic algorithm in conjunction with the “Statistical Products and Services Solution” version 25.0 software, aiming to augment the precision of ice-storage air conditioning load predictions. Initially, the input data undergo processing via the “Statistical Products and Services Solution” software, which facilitates the exclusion of samples exhibiting low coupling. Subsequently, the improved genetic algorithm implements adaptive adjustments to surmount the challenge of random weight parameter initialization prevalent in traditional deep-belief networks. Consequently, an optimized deep-belief neural-network load prediction model, predicated on the enhanced genetic algorithm, is established and subjected to training. Ultimately, the model undergoes simulation validation across three critical dimensions: operational performance, prediction evaluation indices, and operating costs of ice-storage air conditioners. The results indicate that, compared to existing methods for predicting the cooling load of ice-storage air conditioning, the proposed model achieves a prediction accuracy of 96.52%. It also shows an average improvement of 14.12% in computational performance and a 14.32% reduction in model energy consumption. The prediction outcomes align with the actual cooling-load variation patterns. Furthermore, the daily operational cost of ice-storage air conditioning, derived from the predicted cooling-load data, has an error margin of only 2.36%. This contributes to the optimization of ice-storage air conditioning operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
实验体8567号完成签到,获得积分10
3秒前
个性归尘举报嘛呱求助涉嫌违规
27秒前
tlh完成签到 ,获得积分10
33秒前
34秒前
啊咧完成签到,获得积分10
46秒前
海人完成签到 ,获得积分10
54秒前
JamesPei应助啊咧采纳,获得10
1分钟前
1分钟前
小平发布了新的文献求助10
1分钟前
poki完成签到 ,获得积分10
1分钟前
小平完成签到,获得积分10
1分钟前
1分钟前
张国麒完成签到 ,获得积分10
2分钟前
萧奕尘完成签到,获得积分10
2分钟前
3分钟前
研友_nxw2xL完成签到,获得积分10
3分钟前
muriel完成签到,获得积分10
3分钟前
xingsixs完成签到 ,获得积分10
3分钟前
4分钟前
orixero应助Caleb采纳,获得10
4分钟前
李健的小迷弟应助lanbing802采纳,获得10
4分钟前
爱听歌的大地完成签到 ,获得积分10
4分钟前
lanbing802完成签到,获得积分10
4分钟前
秋天好完成签到,获得积分10
4分钟前
5分钟前
小蘑菇应助Grace0621采纳,获得10
5分钟前
Caleb发布了新的文献求助10
5分钟前
Eric800824完成签到 ,获得积分10
5分钟前
5分钟前
Grace0621发布了新的文献求助10
5分钟前
桐桐应助Grace0621采纳,获得10
5分钟前
翻译度完成签到,获得积分10
5分钟前
6分钟前
WenJun完成签到,获得积分10
6分钟前
xuehy128发布了新的文献求助10
6分钟前
Glitter完成签到 ,获得积分10
6分钟前
kd1412完成签到 ,获得积分10
6分钟前
科研通AI5应助姜生在树上采纳,获得10
7分钟前
Demi_Ming完成签到,获得积分10
7分钟前
紫熊发布了新的文献求助10
8分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475449
捐赠科研通 3092626
什么是DOI,文献DOI怎么找? 1702226
邀请新用户注册赠送积分活动 818825
科研通“疑难数据库(出版商)”最低求助积分说明 771101