Joint Contract Design and Task Reorganization for Semi-Decentralized Federated Edge Learning in Vehicular Networks

计算机科学 服务器 灵活性(工程) 任务(项目管理) GSM演进的增强数据速率 匹配(统计) 边缘计算 分布式计算 趋同(经济学) 边缘设备 人工智能 人机交互 机器学习 计算机网络 工程类 系统工程 云计算 统计 数学 经济 经济增长 操作系统
作者
Bo Xu,Haitao Zhao,Haotong Cao,Xiaozhen Lu,Hongbo Zhu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (7): 10539-10553 被引量:1
标识
DOI:10.1109/tvt.2024.3364515
摘要

Federated edge learning (FEEL) emerges as a privacy-preserving paradigm to effectively integrate edge computing for the implementation of deep learning-based vehicular applications. Nevertheless, the incentive mechanism for vehicles participating in varied learning tasks, has not been well explored yet. In this paper, software-defined network (SDN) technology is adopted for the training control among vehicles, and a novel FEEL framework, namely SDN-assisted semi-decentralized FEEL (SSD-FEEL) is investigated, where multiple edge servers collectively coordinate a large number of vehicular models from different learning tasks. By exploiting the low-cost and similar learning tasks among vehicles and edge servers, SSD-FEEL incorporates more training samples, while enjoying the flexibility of edge server assisted model aggregation. Aiming at motivating vehicles to actively participate in training while improving the model accuracy of multiple learning tasks, a joint contract design and task reorganization problem, combined with the evaluation of model convergence and contract performance, is formulated. Then, we propose a two-stage optimization algorithm incorporating iterative reward allocation and task matching, where the model parameters in different tasks are reconstructed according to the matching results with the mobility constraints. Extensive experiments conducted on multiple data sets validate that the proposed algorithm can achieve higher cluster utility and outperform the conventional multi-task FEEL schemes in terms of learning performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hang完成签到,获得积分10
刚刚
1秒前
DINGXH完成签到,获得积分10
2秒前
冰魂应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
8秒前
小李完成签到 ,获得积分10
8秒前
Owen应助斯文的道罡采纳,获得10
10秒前
lzf完成签到,获得积分10
12秒前
可爱的函函应助zzn采纳,获得10
13秒前
13秒前
YangJie完成签到,获得积分10
14秒前
20秒前
kai150333429发布了新的文献求助50
20秒前
billion完成签到,获得积分10
21秒前
24秒前
飞逝的冥想完成签到,获得积分10
26秒前
zzn发布了新的文献求助10
27秒前
2333完成签到,获得积分10
27秒前
aa关闭了aa文献求助
27秒前
28秒前
30秒前
31秒前
星梦完成签到 ,获得积分10
31秒前
31秒前
仁爱钢笔完成签到 ,获得积分10
32秒前
开放剑鬼完成签到,获得积分10
32秒前
36秒前
喜欢了发布了新的文献求助10
36秒前
36秒前
戴戴发布了新的文献求助10
38秒前
39秒前
40秒前
Sweety-完成签到 ,获得积分10
42秒前
不知武士发布了新的文献求助10
42秒前
sswaggyc发布了新的文献求助10
43秒前
11号楼203完成签到,获得积分10
43秒前
44秒前
李子维完成签到 ,获得积分10
44秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
Enhance the effectiveness of affiliate marketing on Tiktok for young people 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831479
求助须知:如何正确求助?哪些是违规求助? 3373689
关于积分的说明 10481025
捐赠科研通 3093675
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307