PI3K/AKT/mTOR通路
蛋白激酶B
癌症研究
破骨细胞
促炎细胞因子
细胞生物学
兰克尔
下调和上调
外体
免疫系统
骨形态发生蛋白2
运行x2
间充质干细胞
炎症
化学
医学
材料科学
成骨细胞
微泡
信号转导
免疫学
生物
内科学
生物化学
激活剂(遗传学)
小RNA
体外
受体
基因
作者
Rongze Tang,Guanhong Liu,Congcong Wang,Minghao Chao,Guangyu Ma,Peng Wei,Siling Du,Junjie Li,Yufan Liu,Jing Cao,Guoquan Wu,Ming Guan,Hongliang Chen,Fenglei Gao
标识
DOI:10.1002/advs.202511327
摘要
Abstract Osteoporosis, characterized by imbalanced bone metabolism and chronic inflammation, remains a therapeutic challenge due to the limitations of current single‐target therapies. This study integrates transcriptomic insights with nanomaterial engineering to develop a multi‐target strategy. Transcriptomic analysis of ovariectomized (OVX) mice reveals immune dysregulation and PI3K/Akt pathway activation, driving osteoclastogenesis. To address this, cobalt‐aluminum layered double hydroxide nanosheets (f‑CA(OH)) are synthesized, which scavenge reactive oxygen species (ROS) via peroxidase‐like activity and stabilize hypoxia‐inducible factor 1α (HIF‑1α) to upregulate BMP2 expression. Co‐culturing f‑CA(OH) with mesenchymal stem cells (MSCs) generate engineered exosomes (fCA‑BExo), encapsulating BMP2 and nanomaterials. In vitro, fCA‑BExo suppress osteoclast differentiation by blocking PI3K/Akt signaling and enhance osteogenesis via SMAD2/RUNX2 activation. In vivo, fCA‑BExo restored trabecular architecture in OVX mice, reduces pro‐inflammatory cytokines, and promote M2 macrophage polarization, demonstrating biocompatibility and efficacy. This “immune‐PI3K/Akt axis” targeting strategy offers a novel paradigm for osteoporosis treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI