Electrospinning Superhydrophobic Flexible Wearable Sensor of CPU@MXene@SiO2 with High Sensing Sensitivity

材料科学 可穿戴计算机 静电纺丝 灵敏度(控制系统) 纳米技术 光电子学 可穿戴技术 复合材料 嵌入式系统 计算机科学 电子工程 聚合物 工程类
作者
Yu Li,Mingming Liu,Xiaodong Zhou,Yongling Wu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.5c07980
摘要

Flexible wearable sensors have garnered significant attention for their potential applications in electronic skins, health monitoring, and smart devices. However, current flexible sensors often suffer from limitations, such as low sensitivity and inadequate resistance to mechanical and chemical degradation. To address these issues, this study presents a CPU@MXene@SiO2 superhydrophobic flexible sensor fabricated using a combination of electrospinning and dip-coating techniques. This sensor features a sandwich structure composed of an electrospinning fiber membrane (CPU) substrate, an MXene conductive coating, and a superhydrophobic SiO2 coating. Based on the fabricated sensor, strain and piezoresistive sensors were further assembled to systematically investigate the effects of micro/nanostructures and chemical compositions on wettability and sensing performance. Experimental results demonstrated that the CPU@MXene@SiO2 sensor exhibited outstanding comprehensive properties including high mechanical strength, superhydrophobicity (CA > 155°, RA < 3°), low adhesion force (33 μN) with water, high sensing sensitivity (gauge factor up to 4922.6), and fast response (response time of 94 ms). Moreover, to validate its potential for large-scale applications, a complete data acquisition system based on an STM32 microcontroller and a mobile application was designed and developed. A 4 × 4 sensor array was successfully fabricated and tested. This sensor demonstrates promising and attractive applications in wearable devices and human-machine interaction, offering an efficient design strategy for constructing robust and highly sensitive flexible sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
4秒前
4秒前
安息香发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
7秒前
8秒前
郝优佳发布了新的文献求助10
9秒前
科研白白完成签到 ,获得积分10
9秒前
刘梦辉完成签到,获得积分10
10秒前
安息香完成签到,获得积分10
10秒前
10秒前
huazhangchina发布了新的文献求助30
10秒前
发光的小Q发布了新的文献求助10
10秒前
11秒前
铜豌豆完成签到,获得积分10
11秒前
Medecinchen发布了新的文献求助10
12秒前
tpt完成签到,获得积分10
12秒前
幽默绮玉完成签到 ,获得积分10
13秒前
聪明大米发布了新的文献求助10
14秒前
今后应助崔昕雨采纳,获得10
14秒前
15秒前
15秒前
16秒前
16秒前
16秒前
铜豌豆发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
天天快乐应助聪明大米采纳,获得10
18秒前
yiyayaxiaojie发布了新的文献求助10
18秒前
Ono发布了新的文献求助10
19秒前
21秒前
huazhangchina完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4220865
求助须知:如何正确求助?哪些是违规求助? 3754403
关于积分的说明 11804227
捐赠科研通 3418063
什么是DOI,文献DOI怎么找? 1876047
邀请新用户注册赠送积分活动 929624
科研通“疑难数据库(出版商)”最低求助积分说明 838159