化学
离子电导率
卤化物
纳米复合材料
离子键合
替代(逻辑)
电导率
氧气
失真(音乐)
固态
钥匙(锁)
无机化学
化学工程
物理化学
电极
有机化学
离子
光电子学
电解质
CMOS芯片
工程类
计算机科学
物理
放大器
程序设计语言
生态学
生物
作者
Shufeng Song,Shengxian Wang,Yanming Cui,Wei Xue,Zhixiang Long,Haiyan Shan,Nur Chamidah,Kentaro Yamamoto,Masashi Kotobuki,Hao Li,Ning Hu
出处
期刊:PubMed
日期:2025-07-19
标识
DOI:10.1021/acs.inorgchem.5c02770
摘要
Designing highly conductive and (electro)chemically stable inorganic solid electrolytes (SEs) from cost-effective precursors is critical for developing all-solid-state batteries (ASSBs). Herein, we report a series of low-cost zirconium (Zr) -based halide nanocomposite SEs, Li1+2xZr1-xTaxO3xCl5-3x (x = 0.33, 0.4, 0.5), synthesized via mechanochemical interaction between LiTaO3 and ZrCl4. The optimized composition, Li1.8Zr0.6Ta0.4O1.2Cl3.8, exhibits enhanced ionic conductivity from 0.46 to 1.12 mS cm-1 and decreased electronic conductivity. Mechanochemical processing modulates the local structural environments of the halide nanocomposites, facilitating ion transport. Combined characterization, including X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and synchrotron X-ray absorption spectroscopy, reveals that oxygen-substituted nanocomposites with distorted local structures are key to improving ion transport. Finally, we demonstrate ASSBs using Li1.8Zr0.6Ta0.4O1.2Cl3.8 as the SE, single-crystalline LiNi0.8Co0.1Mn0.1O2 (scNCM811) as the cathode, and Li-In alloy as the anode, achieving stable cycling at room temperature and 1 C rate.
科研通智能强力驱动
Strongly Powered by AbleSci AI