In silico identification and in vitro expression analysis of breast cancer-related m6A-SNPs

单核苷酸多态性 表达数量性状基因座 乳腺癌 生物信息学 生物 SNP公司 遗传学 癌症 基因 生物信息学 基因型
作者
Tamara Kleinbielen,Félix Olasagasti,Daniel Azcarate,Elena Beristain,Amparo Viguri-Díaz,Isabel Guerra-Merino,Africa Garcı́a-Orad,Marian M. de Pancorbo
出处
期刊:Epigenetics [Landes Bioscience]
卷期号:17 (13): 2144-2156
标识
DOI:10.1080/15592294.2022.2111137
摘要

Research on m6A-associated SNPs (m6A-SNPs) has emerged recently due to their possible critical roles in many key biological processes. In this sense, several investigations have identified m6A-SNPs in different diseases. In order to gain a more complete understanding of the role that m6A-SNPs can play in breast cancer, we performed an in silico analysis to identify the m6A-SNPs associated with breast cancer and to evaluate their possible effects. For this purpose, we downloaded SNPs related to breast cancer and a list of m6A-SNPs from public databases in order to identify which ones appear in both. Subsequently, we assessed the identified m6A-SNPs in silico by expression quantitative trait loci (eQTL) analysis and differential gene expression analysis. We genotyped the m6A-SNPs found in the in silico analysis in 35 patients with breast cancer, and we carried out a gene expression analysis experimentally on those that showed differences. Our results identified 981 m6A-SNPs related to breast cancer. Four m6A-SNPs showed an eQTL effect and only three were in genes that presented an altered gene expression. When the three m6A-SNPs were evaluated in the tissue sample of our breast cancer patients, only the m6A-SNP rs76563149 located in ZNF354A gene presented differences in allele frequencies and a low gene expression in breast cancer tissues, especially in luminal B HER2+ subtype. Future investigations of these m6A-SNPs should expand the study in different ethnic groups and increase the sample sizes to test their association with breast cancer and elucidate their molecular function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
糖丸完成签到,获得积分10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
坚定士萧应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
QIN发布了新的文献求助10
2秒前
果丹皮应助科研通管家采纳,获得10
2秒前
轩xuan发布了新的文献求助10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
nenoaowu发布了新的文献求助10
3秒前
TailongShi发布了新的文献求助50
4秒前
4秒前
4秒前
海的呼唤发布了新的文献求助10
4秒前
5秒前
谦让冬日发布了新的文献求助10
5秒前
5秒前
BananaSlayer发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4748170
求助须知:如何正确求助?哪些是违规求助? 4094981
关于积分的说明 12669982
捐赠科研通 3807233
什么是DOI,文献DOI怎么找? 2101745
邀请新用户注册赠送积分活动 1127005
关于科研通互助平台的介绍 1003650