特征(语言学)
启发式
公制(单位)
计算机科学
特征选择
选择(遗传算法)
人工智能
二次方程
功能(生物学)
量子
进化算法
缩放比例
算法
理论计算机科学
模式识别(心理学)
数学
工程类
生物
物理
哲学
进化生物学
量子力学
语言学
运营管理
几何学
作者
Anton S. Albino,Otto M. Pires,Mauro Q. Nooblath,Erick Giovani Sperandio Nascimento
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2303.07131
摘要
Effective feature selection is essential for enhancing the performance of artificial intelligence models. It involves identifying feature combinations that optimize a given metric, but this is a challenging task due to the problem's exponential time complexity. In this study, we present an innovative heuristic called Evolutionary Quantum Feature Selection (EQFS) that employs the Quantum Circuit Evolution (QCE) algorithm. Our approach harnesses the unique capabilities of QCE, which utilizes shallow depth circuits to generate sparse probability distributions. Our computational experiments demonstrate that EQFS can identify good feature combinations with quadratic scaling in the number of features. To evaluate EQFS's performance, we counted the number of times a given classical model assesses the cost function for a specific metric, as a function of the number of generations.
科研通智能强力驱动
Strongly Powered by AbleSci AI