亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid IACO-A*-PSO optimization algorithm for solving multiobjective path planning problem of mobile robot in radioactive environment

计算机科学 蚁群优化算法 运动规划 数学优化 粒子群优化 遗传算法 算法 能源消耗 路径(计算) 机器人 启发式 适应度函数 人工智能 数学 工程类 机器学习 电气工程 程序设计语言
作者
Zhang De,Ye-bo Yin,Run Luo,Shuliang Zou
出处
期刊:Progress in Nuclear Energy [Elsevier BV]
卷期号:159: 104651-104651 被引量:30
标识
DOI:10.1016/j.pnucene.2023.104651
摘要

Mobile robots are receiving significant interest in the nuclear energy industry because of their potential intelligence features and efficient operation. Mobile robot path planning (PP) in a radioactive environment can be considered as finding a collision-free path constrained by the path length, cumulative radiation dose rate and energy consumption. To solve this multiobjective path planning (MOPP) problem, we propose a hybrid algorithm based on an improved ant colony optimization (IACO), the A* algorithm and particle swarm optimization (IACO-A*-PSO). First, a modified A* algorithm is presented to find a suboptimal path, which is used to improve the initial ACO pheromone. Next, an improvement of the adaptive heuristic function and pheromone update rule based on an elitist system is proposed to balance the global search ability and convergence speed of the ant colony algorithm. Finally, PSO is used to obtain the optimal ACO control parameters and multiobjective weight coefficients. To evaluate the efficiency of the proposed algorithm, a comparative study has been performed between the proposed IACO-A*-PSO, the A*, ACO, and IACO algorithms and a genetic algorithm (GA) in four radioactive indoor environments with different sizes, radioactive sources and obstacles. The simulation results show that the proposed algorithm has the best comprehensive performance and stronger adaptability to different environments than the A*, ACO, IACO and GA algorithms in terms of the path length, cumulative radiation dose, energy consumption, runtime and success rate simultaneously. This demonstrates that the proposed algorithm is an effective method for solving the MOPP problem of mobile robot in radioactive environment, which is beneficial for improving the safety and reliability of robots in nuclear energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后晓兰完成签到 ,获得积分10
1秒前
xingsixs完成签到 ,获得积分10
23秒前
Cassie发布了新的文献求助10
58秒前
neversay4ever完成签到 ,获得积分10
1分钟前
科研通AI5应助秋日思语采纳,获得10
2分钟前
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得30
2分钟前
wang发布了新的文献求助10
2分钟前
2分钟前
2分钟前
秋日思语发布了新的文献求助10
2分钟前
2分钟前
andrele完成签到,获得积分10
2分钟前
hqh发布了新的文献求助10
2分钟前
枫威完成签到 ,获得积分10
2分钟前
andrele发布了新的文献求助30
3分钟前
3分钟前
3分钟前
Waymaker发布了新的文献求助10
3分钟前
gincle完成签到 ,获得积分10
3分钟前
Waymaker完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
RR完成签到 ,获得积分10
5分钟前
5分钟前
Auralis完成签到 ,获得积分10
5分钟前
儒雅海秋完成签到,获得积分10
6分钟前
852应助科研通管家采纳,获得10
6分钟前
小榕树完成签到,获得积分10
6分钟前
7分钟前
7分钟前
7分钟前
Orange应助cometx采纳,获得10
7分钟前
zcxxxxxxx完成签到,获得积分10
7分钟前
7分钟前
GGGrigor完成签到,获得积分10
7分钟前
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173891
求助须知:如何正确求助?哪些是违规求助? 4363528
关于积分的说明 13585633
捐赠科研通 4212140
什么是DOI,文献DOI怎么找? 2310229
邀请新用户注册赠送积分活动 1309314
关于科研通互助平台的介绍 1256721