Multigranular Visual-Semantic Embedding for Cloth-Changing Person Re-identification

计算机科学 嵌入 人工智能 稳健性(进化) 特征(语言学) 代表(政治) 服装 任务(项目管理) 基因 经济 法学 政治学 政治 考古 管理 哲学 语言学 化学 生物化学 历史
作者
Zan Gao,Hongwei Wei,Weili Guan,Weizhi Nie,Meng Liu,Meng Wang
标识
DOI:10.1145/3503161.3547884
摘要

To date, only a few works have focused on the cloth-changing person Re-identification (ReID) task, but since it is very difficult to extract generalized and robust features for representing people with different clothes, thus, their performances need to be improved. Moreover, visual-semantic information is also often ignored. To solve these issues, in this work, a novel multigranular visual-semantic embedding algorithm (MVSE) is proposed for cloth-changing person ReID, where visual semantic information and human attributes are embedded into the network, and the generalized features of human appearance can be well learned to effectively solve the problem of cloth-changing. Specifically, to fully represent a person with clothing changes, a multigranular feature representation scheme (MGR) is employed to adaptively extract multilevel and multigranular feature information, and then a cloth desensitization network (CDN) is designed to improve the feature robustness for the person with different clothes, where different high-level human attributes are fully utilized. Moreover, to further solve the issue of pose changes and occlusion under different camera perspectives, a partially semantically aligned network (PSA) is proposed to obtain the visual-semantic information that is used to align the human attributes. Most importantly, these three modules are jointly explored in a unified framework. Extensive experimental results on four cloth-changing person ReID datasets demonstrate that the MVSE algorithm can extract highly robust feature representations of cloth-changing persons, and it can outperform state-of-the-art cloth-changing person ReID approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WXP发布了新的文献求助30
刚刚
感动书文完成签到,获得积分10
刚刚
1秒前
Lucas应助不忘初心采纳,获得10
1秒前
ding应助lulu采纳,获得50
2秒前
CodeCraft应助ylr采纳,获得10
4秒前
6秒前
科研通AI5应助320me666采纳,获得10
7秒前
duanhuiyuan应助优美的口红采纳,获得30
7秒前
Sean_sy完成签到,获得积分10
7秒前
8秒前
无奈曼云发布了新的文献求助10
8秒前
左然然完成签到,获得积分10
9秒前
落叶为谁殇完成签到,获得积分10
10秒前
11秒前
忧虑的代容完成签到,获得积分10
12秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
ylr完成签到,获得积分10
14秒前
田様应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
simon_chou发布了新的文献求助10
15秒前
15秒前
英姑应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
不忘初心发布了新的文献求助10
16秒前
大胆海瑶完成签到,获得积分10
17秒前
zhian完成签到,获得积分20
17秒前
21秒前
ssc完成签到,获得积分10
21秒前
21秒前
激情的凌青完成签到 ,获得积分10
22秒前
小猫来啦完成签到,获得积分10
22秒前
福娃哇完成签到 ,获得积分10
23秒前
24秒前
ylr发布了新的文献求助10
24秒前
24秒前
cdercder发布了新的文献求助10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785749
求助须知:如何正确求助?哪些是违规求助? 3331166
关于积分的说明 10250472
捐赠科研通 3046615
什么是DOI,文献DOI怎么找? 1672143
邀请新用户注册赠送积分活动 801026
科研通“疑难数据库(出版商)”最低求助积分说明 759979