Transferability of Machine Learning Algorithm for IoT Device Profiling and Identification

计算机科学 仿形(计算机编程) 可转让性 算法 机器学习 鉴定(生物学) 人工智能 物联网 数据挖掘 嵌入式系统 操作系统 植物 生物 罗伊特
作者
Priscilla Kyei Danso,Sajjad Dadkhah,Euclides Carlos Pinto Neto,Alireza Zohourian,Heather Molyneaux,Rongxing Lu,Ali A. Ghorbani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2322-2335 被引量:9
标识
DOI:10.1109/jiot.2023.3292319
摘要

The lack of appropriate cyber security measures deployed on Internet of Things (IoT) makes these devices prone to security issues. Consequently, the timely identification and detection of these compromised devices become crucial. Machine learning (ML) models which are used to monitor devices in a network have made tremendous strides. However, most of the research in profiling and identification uses the same data for training and testing. Hence, a slight change in the data renders most learning algorithms to work poorly. In this article, we study a transferability approach based on the concept of transductive transfer learning for IoT device profiling and identification. Notably, this type of transfer learning works by explicitly assigning labels to the test data in the target domain by using the test feature space in the target domain, with training data from the source domain. Specifically, we propose a three-component system comprising: 1) the device type identification; 2) the vulnerability assessment; and 3) the visualization module. The device type identification component uses the underlying concept of transductive transfer learning where the trained model is transferred to a remote lab for testing. A variety of ML models are evaluated with respect to accuracy, precision, recall, and F1-score in order to determine which are the most suitable for the proposed transferability profiling. Furthermore, the vulnerability of the predicted device type is also assessed by using three vulnerability databases: 1) Vulners; 2) National Vulnerability Database (NVD); and 3) IBM X-Force. Finally, the results from the vulnerability assessment are visualized and displayed on a dashboard.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
znn发布了新的文献求助10
刚刚
研友_8QyXr8发布了新的文献求助20
1秒前
情怀应助歌尔德蒙采纳,获得30
1秒前
2秒前
2秒前
03发布了新的文献求助10
2秒前
2秒前
香蕉觅云应助yyk采纳,获得10
3秒前
隐形曼青应助makabaka采纳,获得10
3秒前
3秒前
平常的毛豆应助1号选手采纳,获得10
4秒前
4秒前
4秒前
6161发布了新的文献求助10
5秒前
5秒前
6秒前
YAN发布了新的文献求助10
7秒前
科目三应助缥缈的铅笔采纳,获得10
7秒前
log发布了新的文献求助10
8秒前
沙漠水发布了新的文献求助10
8秒前
星辰大海应助称心寒松采纳,获得10
8秒前
宇文夏青完成签到,获得积分10
9秒前
德荣发布了新的文献求助10
9秒前
10秒前
10秒前
哈哈完成签到,获得积分10
10秒前
夕寸完成签到,获得积分10
10秒前
细心水绿发布了新的文献求助10
11秒前
11秒前
11秒前
猎空发布了新的文献求助10
12秒前
CIOOICO1发布了新的文献求助10
12秒前
Jotaro完成签到,获得积分10
12秒前
12秒前
12秒前
云上人发布了新的文献求助10
13秒前
14秒前
makabaka发布了新的文献求助10
14秒前
ShuyueXue完成签到,获得积分20
14秒前
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842551
求助须知:如何正确求助?哪些是违规求助? 3384645
关于积分的说明 10536396
捐赠科研通 3105179
什么是DOI,文献DOI怎么找? 1710071
邀请新用户注册赠送积分活动 823490
科研通“疑难数据库(出版商)”最低求助积分说明 774110