亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Online attention dynamics: The triangle framework of theory, big data and simulations

大数据 计算机科学 动力学(音乐) 数据科学 数据挖掘 理论计算机科学 心理学 教育学
作者
Peng Lü,Dianhan Chen,Gang Zhang,Jieying Ding
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:233: 120900-120900 被引量:5
标识
DOI:10.1016/j.eswa.2023.120900
摘要

In computational social science era, the theory, big data and simulations should be well combined and deeply integrated, and this work serves as a typical example. Online collective actions have great impacts to societies, and we focus on the life cycle pattern of coexisting multiple online cases. We propose the analysis framework of "Theory-Big Data-simulation" (TDS). The theory includes two essential action rules of netizens. We combined macro-level analysis (big data analysis) and micro-level behavior (agent-based modeling), to surpport the theory. For the big data, macro-level life cycle pattern (persistent) is caused by micro-level individual actions. For macro-level verification, basic assumption is that netizens are allocating limited attentions to limited coexisting online events, which has been supported by our big data from the Weibo platform (N=197,985). For the micro-level, we use agent-based modeling to verify the behavioral rules of Netizens. We set two agent categories (Netizens & Hots), which behave and interact autonomously. Based on multiple-round simulations, we obtained optimal solution outcomes. Besides, we have implemented mutual validation between big data and agent-based modeling, which has not been considered before. Three big data sets have been applied to check both validity and robustness of our solutions. For the dataset A, we use 89 online cases of the Shaanxi Province in China. For the dataset B, we used 147 online cases of the whole China in 2021. For the dataset C, we used 138 online cases under specific topic (the pandemic). It suggests that three optimal solutions have both validity and robustness. As three big data sets have different levels, cases, topics and durations, the model's generality can be well supported. Hence, general behavior pattern of the Netizens can be revealed, which is of great significance for investigating human behavior online. Moreover, our work contains rich managerial implications, which helps to improve social simulation and prediction. Also, our TDS analysis framework can support or inspire other researches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
互助应助科研通管家采纳,获得10
33秒前
星辰大海应助科研通管家采纳,获得10
33秒前
英俊的铭应助科研通管家采纳,获得10
33秒前
cmmm完成签到 ,获得积分10
47秒前
WWW完成签到 ,获得积分10
1分钟前
sidashu发布了新的文献求助10
1分钟前
FashionBoy应助帅气曼冬采纳,获得30
1分钟前
魁梧的衫完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
帅气曼冬发布了新的文献求助30
2分钟前
2分钟前
互助应助科研通管家采纳,获得10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
互助应助科研通管家采纳,获得10
2分钟前
整齐芝麻应助科研通管家采纳,获得10
2分钟前
互助应助科研通管家采纳,获得10
2分钟前
anwei发布了新的文献求助10
2分钟前
朴实雨泽完成签到 ,获得积分10
3分钟前
qsx完成签到 ,获得积分10
3分钟前
互助应助科研通管家采纳,获得10
4分钟前
互助应助科研通管家采纳,获得10
4分钟前
互助应助科研通管家采纳,获得10
4分钟前
Hello应助科研通管家采纳,获得10
4分钟前
xu0052应助anwei采纳,获得10
4分钟前
4分钟前
落山姬完成签到,获得积分10
5分钟前
5分钟前
6分钟前
PAIDAXXXX完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
互助应助科研通管家采纳,获得10
6分钟前
互助应助科研通管家采纳,获得10
6分钟前
互助应助科研通管家采纳,获得10
6分钟前
SciGPT应助阿里嘎多美羊羊采纳,获得10
6分钟前
7分钟前
Noob_saibot发布了新的文献求助10
7分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
Modern Relationships 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5850017
求助须知:如何正确求助?哪些是违规求助? 6254459
关于积分的说明 15624963
捐赠科研通 4966416
什么是DOI,文献DOI怎么找? 2677912
邀请新用户注册赠送积分活动 1622214
关于科研通互助平台的介绍 1578346