亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RemoteCLIP: A Vision Language Foundation Model for Remote Sensing

基础(证据) 计算机科学 人工智能 遥感 计算机视觉 地理 考古
作者
Fan Liu,Delong Chen,Zhangqingyun Guan,Xiaocong Zhou,Jiale Zhu,Jun Zhou
出处
期刊:Cornell University - arXiv 被引量:13
标识
DOI:10.48550/arxiv.2306.11029
摘要

General-purpose foundation models have led to recent breakthroughs in artificial intelligence. In remote sensing, self-supervised learning (SSL) and Masked Image Modeling (MIM) have been adopted to build foundation models. However, these models primarily learn low-level features and require annotated data for fine-tuning. Moreover, they are inapplicable for retrieval and zero-shot applications due to the lack of language understanding. To address these limitations, we propose RemoteCLIP, the first vision-language foundation model for remote sensing that aims to learn robust visual features with rich semantics and aligned text embeddings for seamless downstream application. To address the scarcity of pre-training data, we leverage data scaling which converts heterogeneous annotations into a unified image-caption data format based on Box-to-Caption (B2C) and Mask-to-Box (M2B) conversion. By further incorporating UAV imagery, we produce a 12 $\times$ larger pretraining dataset than the combination of all available datasets. RemoteCLIP can be applied to a variety of downstream tasks, including zero-shot image classification, linear probing, $\textit{k}$-NN classification, few-shot classification, image-text retrieval, and object counting in remote sensing images. Evaluation on 16 datasets, including a newly introduced RemoteCount benchmark to test the object counting ability, shows that RemoteCLIP consistently outperforms baseline foundation models across different model scales. Impressively, RemoteCLIP beats the state-of-the-art method by 9.14% mean recall on the RSITMD dataset and 8.92% on the RSICD dataset. For zero-shot classification, our RemoteCLIP outperforms the CLIP baseline by up to 6.39% average accuracy on 12 downstream datasets. Project website: https://github.com/ChenDelong1999/RemoteCLIP
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动清炎完成签到,获得积分10
7秒前
9秒前
Hvginn完成签到,获得积分10
9秒前
34秒前
51秒前
yipmyonphu完成签到,获得积分10
56秒前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
Sylvia完成签到 ,获得积分10
3分钟前
nt7401发布了新的文献求助10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
白华苍松发布了新的文献求助20
4分钟前
大模型应助eternity采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
nt7401完成签到,获得积分10
5分钟前
5分钟前
方沅完成签到,获得积分10
5分钟前
leaolf应助白华苍松采纳,获得10
5分钟前
eternity关注了科研通微信公众号
5分钟前
5分钟前
5分钟前
eternity发布了新的文献求助10
6分钟前
123关注了科研通微信公众号
6分钟前
6分钟前
Marciu33发布了新的文献求助30
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
乐乐应助ygl0217采纳,获得10
7分钟前
7分钟前
ygl0217发布了新的文献求助10
7分钟前
7分钟前
李健应助ceeray23采纳,获得20
7分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4834442
求助须知:如何正确求助?哪些是违规求助? 4138281
关于积分的说明 12808243
捐赠科研通 3882034
什么是DOI,文献DOI怎么找? 2134977
邀请新用户注册赠送积分活动 1155023
关于科研通互助平台的介绍 1054229