Structural Regression Fusion for Unsupervised Multimodal Change Detection

计算机科学 人工智能 不可用 图像融合 模式识别(心理学) 转化(遗传学) 回归 融合 图像(数学) 融合规则 计算机视觉 数学 统计 生物化学 化学 语言学 哲学 基因
作者
Yuli Sun,Lin Lei,Li Liu,Gangyao Kuang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:11
标识
DOI:10.1109/tgrs.2023.3294884
摘要

Multimodal change detection (MCD) is an increasingly interesting but very challenging topic in remote sensing, which is due to the unavailability of detecting changes by directly comparing multimodal images from different domains. In this paper, we first analyze the structural asymmetry between multitemporal images and show their negative impact on the previous MCD methods using image structures. Specifically, when there is a structural asymmetry, previous structure based methods can only complete a structure comparison or image regression in one direction and fails in the other direction, that is, they cannot transform or convert from complex structural images (with more categories) to simple structural images (with fewer categories). To reduce the influence of structural asymmetry, we propose a structural regression fusion based method (SRF) that simultaneously transforms the pre-event and post-event images into the image domain of each other, calculating the forward and backward changed images, respectively. Noteworthy, different from previous late fusion methods that fuse the forward and backward changed images in the post-processing stage, SRF incorporates fusion into the regression process, which can fully explore the connection between changed images, and thus improve image transformation performance and obtain better changed images. Specifically, SRF yields three types of constraints to perform the fused image transformation: structure consistency based regression term, change smoothness and alignment based fusion term, and prior sparsity based penalty term. Finally, the changes can be extracted by comparing the transformed and original images. The proposed SRF is verified on six real data sets by comparing with some state-of-the-art methods. Source code of the proposed method will be made available at https://github.com/yulisun/SRF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangxiaoqing发布了新的文献求助30
刚刚
刚刚
jack完成签到 ,获得积分10
2秒前
WDK发布了新的文献求助10
2秒前
珂尔维特完成签到,获得积分10
2秒前
万能图书馆应助洛阳官人采纳,获得10
2秒前
3秒前
乐正一兰完成签到,获得积分10
3秒前
深情安青应助Wang采纳,获得10
4秒前
深情安青应助7Hours采纳,获得10
4秒前
英姑应助加油呀采纳,获得30
4秒前
BOSLobster发布了新的文献求助10
5秒前
ccccc完成签到,获得积分10
5秒前
5秒前
YCW发布了新的文献求助10
5秒前
6秒前
7秒前
小蘑菇应助开放的月饼采纳,获得10
8秒前
彭于彦祖应助科研小菜鸡采纳,获得20
8秒前
Starlit发布了新的文献求助10
8秒前
乐乐茶发布了新的文献求助10
9秒前
9秒前
彩色的誉完成签到,获得积分20
9秒前
9秒前
铜板还太少完成签到,获得积分10
9秒前
樊晓发布了新的文献求助10
10秒前
WDK完成签到,获得积分10
10秒前
simey发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
ccccc发布了新的文献求助10
12秒前
7Hours发布了新的文献求助10
14秒前
14秒前
打打应助BOSLobster采纳,获得10
15秒前
wangxiaoqing完成签到,获得积分20
15秒前
123发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3896967
求助须知:如何正确求助?哪些是违规求助? 3440775
关于积分的说明 10818700
捐赠科研通 3165709
什么是DOI,文献DOI怎么找? 1748929
邀请新用户注册赠送积分活动 845071
科研通“疑难数据库(出版商)”最低求助积分说明 788423