Candidate-aware Graph Contrastive Learning for Recommendation

计算机科学 人工智能 图形 推荐系统 机器学习 数据挖掘 模式识别(心理学) 理论计算机科学
作者
Wei He,Guohao Sun,Jinhu Lu,Xiu Susie Fang
标识
DOI:10.1145/3539618.3591647
摘要

Recently, Graph Neural Networks (GNNs) have become a mainstream recommender system method, where it captures high-order collaborative signals between nodes by performing convolution operations on the user-item interaction graph to predict user preferences for different items. However, in real scenarios, the user-item interaction graph is extremely sparse, which means numerous users only interact with a small number of items, resulting in the inability of GNN in learning high-quality node embeddings. To alleviate this problem, the Graph Contrastive Learning (GCL)-based recommender system method is proposed. GCL improves embedding quality by maximizing the similarity of the positive pair and minimizing the similarity of the negative pair. However, most GCL-based methods use heuristic data augmentation methods, i.e., random node/edge drop and attribute masking, to construct contrastive pairs, resulting in the loss of important information. To solve the problems in GCL-based methods, we propose a novel method, Candidate-aware Graph Contrastive Learning for Recommendation, called CGCL. In CGCL, we explore the relationship between the user and the candidate item in the embedding at different layers and use similar semantic embeddings to construct contrastive pairs. By our proposed CGCL, we construct structural neighbor contrastive learning objects, candidate contrastive learning objects, and candidate structural neighbor contrastive learning objects to obtain high-quality node embeddings. To validate the proposed model, we conducted extensive experiments on three publicly available datasets. Compared with various state-of-the-art DNN-, GNN- and GCL-based methods, our proposed CGCL achieved significant improvements in all indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的康乃馨完成签到 ,获得积分10
3秒前
桐桐应助研友_nPbeR8采纳,获得10
5秒前
香蕉觅云应助peipei采纳,获得10
6秒前
xxs完成签到,获得积分10
7秒前
shuke完成签到,获得积分10
7秒前
Ying完成签到,获得积分10
8秒前
9秒前
彩色的恋风完成签到,获得积分10
10秒前
12秒前
陈醋塔塔完成签到,获得积分10
13秒前
高挑的梦芝完成签到,获得积分10
14秒前
学不完了发布了新的文献求助10
14秒前
迅速的萧完成签到 ,获得积分10
15秒前
15秒前
JamesPei应助俭朴的期待采纳,获得10
16秒前
Dawn完成签到,获得积分10
17秒前
17秒前
SSYZ发布了新的文献求助10
21秒前
赘婿应助科演小能手采纳,获得10
21秒前
23秒前
哈哈完成签到,获得积分20
25秒前
guoduan发布了新的文献求助10
26秒前
烂漫夜梦完成签到,获得积分10
26秒前
小垃圾完成签到,获得积分10
26秒前
李健应助SSYZ采纳,获得10
26秒前
上官若男应助苏梗采纳,获得10
26秒前
研友_nPbeR8发布了新的文献求助10
27秒前
27秒前
NN完成签到,获得积分10
29秒前
33秒前
SSYZ完成签到,获得积分10
33秒前
34秒前
36秒前
扶摇直上九万里完成签到 ,获得积分20
37秒前
38秒前
随便完成签到 ,获得积分10
38秒前
小垃圾发布了新的文献求助10
40秒前
40秒前
41秒前
42秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321756
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680172
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445