Unveiling Key Themes and Establishing a Hierarchical Taxonomy of Disaster-Related Tweets: A Text Mining Approach for Enhanced Emergency Management Planning

潜在Dirichlet分配 应急管理 社会化媒体 计算机科学 主题模型 数据科学 分类 知识管理 情报检索 万维网 政治学 人工智能 法学
作者
James Durham,Sudipta Chowdhury,Ammar Alzarrad
出处
期刊:Information [Multidisciplinary Digital Publishing Institute]
卷期号:14 (7): 385-385 被引量:3
标识
DOI:10.3390/info14070385
摘要

Effectively harnessing the power of social media data for disaster management requires sophisticated analysis methods and frameworks. This research focuses on understanding the contextual information present in social media posts during disasters and developing a taxonomy to effectively categorize and classify the diverse range of topics discussed. First, the existing literature on social media analysis in disaster management is explored, highlighting the limitations and gaps in current methodologies. Second, a dataset comprising real-time social media posts related to various disasters is collected and preprocessed to ensure data quality and reliability. Third, three well-established topic modeling techniques, namely Latent Dirichlet Allocation (LDA), Latent Semantic Analysis (LSA), and Non-Negative Matrix Factorization (NMF), are employed to extract and analyze the latent topics and themes present in the social media data. The contributions of this research lie in the development of a taxonomy that effectively categorizes and classifies disaster-related social media data, the identification of key latent topics and themes, and the extraction of valuable insights to support and enhance emergency management efforts. Overall, the findings of this research have the potential to transform the way emergency management and response are conducted by harnessing the power of social media data. By incorporating these insights into decision-making processes, emergency managers can make more informed and strategic choices, resulting in more efficient and effective emergency response strategies. This, in turn, leads to improved outcomes, better utilization of resources, and ultimately, the ability to save lives and mitigate the impacts of disasters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
橙蓝发布了新的文献求助100
1秒前
旅程完成签到,获得积分10
2秒前
Jasper应助xun采纳,获得10
3秒前
小慕斯发布了新的文献求助10
3秒前
shutup完成签到,获得积分10
5秒前
laber应助liyu采纳,获得50
5秒前
ljs完成签到,获得积分10
8秒前
英俊的铭应助苏苏采纳,获得10
8秒前
小二郎应助ju采纳,获得10
10秒前
blossoms完成签到 ,获得积分10
12秒前
liyu给liyu的求助进行了留言
13秒前
ljs发布了新的文献求助10
14秒前
科研助手6应助能HJY采纳,获得10
14秒前
朴素的士晋完成签到 ,获得积分10
17秒前
17秒前
认真的飞扬完成签到,获得积分10
17秒前
小媛完成签到 ,获得积分10
18秒前
tianshanfeihe完成签到 ,获得积分10
18秒前
shuang完成签到 ,获得积分10
18秒前
zz完成签到,获得积分10
19秒前
19秒前
Rain完成签到,获得积分10
21秒前
明亮巨人完成签到 ,获得积分10
21秒前
xun发布了新的文献求助10
21秒前
科研通AI2S应助邵翎365采纳,获得10
22秒前
苏苏发布了新的文献求助10
23秒前
hs完成签到,获得积分10
24秒前
是鑫鑫完成签到,获得积分20
31秒前
冰激凌完成签到,获得积分10
31秒前
kiwi发布了新的文献求助10
32秒前
材1完成签到 ,获得积分10
32秒前
开心夏旋完成签到 ,获得积分10
32秒前
33秒前
33秒前
36秒前
泡沫发布了新的文献求助10
37秒前
39秒前
apollo3232完成签到,获得积分10
39秒前
情怀应助活着采纳,获得10
41秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801134
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330258
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681383
邀请新用户注册赠送积分活动 807540
科研通“疑难数据库(出版商)”最低求助积分说明 763728