Deep-Learning-Based Automated Tracking and Counting of Living Plankton in Natural Aquatic Environments

浮游生物 浮游动物 稳健性(进化) 环境监测 工作流程 计算机科学 环境科学 水质 人工智能 机器学习 生态学 环境工程 生物 数据库 生物化学 基因
作者
Zhuo Chen,Meng Du,Xudan Yang,Wei Chen,Yu‐Sheng Li,Chen Qian,Han‐Qing Yu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 18048-18057 被引量:18
标识
DOI:10.1021/acs.est.3c00253
摘要

Plankton are widely distributed in the aquatic environment and serve as an indicator of water quality. Monitoring the spatiotemporal variation in plankton is an efficient approach to forewarning environmental risks. However, conventional microscopy counting is time-consuming and laborious, hindering the application of plankton statistics for environmental monitoring. In this work, an automated video-oriented plankton tracking workflow (AVPTW) based on deep learning is proposed for continuous monitoring of living plankton abundance in aquatic environments. With automatic video acquisition, background calibration, detection, tracking, correction, and statistics, various types of moving zooplankton and phytoplankton were counted at a time scale. The accuracy of AVPTW was validated with conventional counting via microscopy. Since AVPTW is only sensitive to mobile plankton, the temperature- and wastewater-discharge-induced plankton population variations were monitored online, demonstrating the sensitivity of AVPTW to environmental changes. The robustness of AVPTW was also confirmed with natural water samples from a contaminated river and an uncontaminated lake. Notably, automated workflows are essential for generating large amounts of data, which are a prerequisite for available data set construction and subsequent data mining. Furthermore, data-driven approaches based on deep learning pave a novel way for long-term online environmental monitoring and elucidating the correlation underlying environmental indicators. This work provides a replicable paradigm to combine imaging devices with deep-learning algorithms for environmental monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助十一采纳,获得10
刚刚
1秒前
1秒前
怡然银耳汤完成签到,获得积分10
2秒前
一念之间完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
肥大鸭发布了新的文献求助10
4秒前
zyb完成签到,获得积分10
4秒前
玫瑰少年完成签到 ,获得积分10
5秒前
ASD发布了新的文献求助10
5秒前
5秒前
搜集达人应助dingyuhong采纳,获得10
6秒前
姜丝罐罐n发布了新的文献求助10
8秒前
8秒前
Hello应助风清扬采纳,获得10
8秒前
所所应助ASD采纳,获得10
10秒前
10秒前
大壮发布了新的文献求助10
10秒前
lhhhhh发布了新的文献求助10
10秒前
咕噜噜发布了新的文献求助10
11秒前
11秒前
肥大鸭完成签到,获得积分10
11秒前
英俊的铭应助wu采纳,获得10
12秒前
可靠飞飞发布了新的文献求助10
12秒前
keyia发布了新的文献求助10
12秒前
浮游应助春风不语采纳,获得10
12秒前
和平鸽完成签到 ,获得积分10
12秒前
小小技术工完成签到 ,获得积分10
12秒前
13秒前
xl完成签到,获得积分20
13秒前
13秒前
15秒前
15秒前
16秒前
Lucas应助杨胜菲采纳,获得10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571900
求助须知:如何正确求助?哪些是违规求助? 4657057
关于积分的说明 14719219
捐赠科研通 4597883
什么是DOI,文献DOI怎么找? 2523461
邀请新用户注册赠送积分活动 1494260
关于科研通互助平台的介绍 1464374