Efficient and Robust: A Cross-Modal Registration Deep Wavelet Learning Method for Remote Sensing Images

人工智能 计算机科学 小波 模式识别(心理学) 卷积神经网络 稳健性(进化) 判别式 深度学习 小波变换 情态动词 计算机视觉 图像配准 特征提取 特征(语言学) 匹配(统计) 图像(数学) 数学 哲学 统计 基因 化学 高分子化学 生物化学 语言学
作者
Dou Quan,Huiyuan Wei,Shuang Wang,Yi Li,Jocelyn Chanussot,Yanhe Guo,Biao Hou,Licheng Jiao
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 4739-4754 被引量:16
标识
DOI:10.1109/jstars.2023.3276409
摘要

Deep convolutional networks are powerful for local feature learning and have shown advantages in image matching and registration. However, the significant differences between cross-modal images increase the challenge of image registration. The deep network should extract modality-invariant features to identify the matching samples and discriminative features to separate the nonmatching samples. The deep network can extract features invariant to the image modality changes by multiple nonlinear mapping layers. However, it does not inevitably lose rich details and affect the discrimination of features, degrading registration performances. This article proposes a novel deep wavelet learning network (DW-Net) for local feature learning. It incorporates spectral information into deep convolutional features for improving cross-modal image matching and registration. Specifically, this article aims to learn the multiresolution wavelet features through multilevel wavelet transform (WT) and the convolutional network. The cross-modal images are divided into low-frequency and high-frequency parts through WT. DW-Net can adaptively extract the shared features from the low-frequency part and useful details from the high-frequency part, which can enhance the modality invariance and discrimination of features. Additionally, the multiresolution wavelet features contain multiscale information and contribute to improving the matching accuracy. Extensive experiments demonstrate the significant advantages in terms of the accuracy and robustness of DW-Net on cross-modal remote sensing image registration. DW-Net can increase the image patch matching accuracy by 3.7% and improve image registration probability by 12.1%. Moreover, DW-Net shows strong generalization performances from low resolution to high resolution and from optical– synthetic aperture radar to other cross-modal image registration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉天完成签到,获得积分10
刚刚
独特的凝云完成签到 ,获得积分10
刚刚
浮游应助呆萌井采纳,获得10
刚刚
汉堡包应助霜烬染采纳,获得10
1秒前
易酰水烊酸完成签到,获得积分10
1秒前
2秒前
鲸落完成签到,获得积分10
2秒前
周宇飞完成签到 ,获得积分10
2秒前
TONG完成签到 ,获得积分10
3秒前
shuang完成签到,获得积分10
3秒前
南星完成签到 ,获得积分10
3秒前
3秒前
刘超D完成签到,获得积分10
4秒前
大海123完成签到,获得积分10
4秒前
Jeff_Lin发布了新的文献求助10
4秒前
鲤鱼怀绿完成签到,获得积分10
4秒前
RNNNLL完成签到,获得积分10
4秒前
罗密欧与傅里叶完成签到,获得积分10
4秒前
xxx完成签到,获得积分10
5秒前
ggg完成签到,获得积分10
5秒前
LCL完成签到,获得积分10
5秒前
咎淇完成签到,获得积分10
6秒前
tt发布了新的文献求助10
6秒前
XU徐完成签到,获得积分10
6秒前
默存完成签到,获得积分10
6秒前
配你zzz发布了新的文献求助10
7秒前
聪明的寒梅完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
Ww完成签到,获得积分10
8秒前
美好的尔白完成签到,获得积分10
8秒前
YYL完成签到,获得积分10
9秒前
9秒前
神经娃完成签到,获得积分10
9秒前
八九完成签到,获得积分10
10秒前
10秒前
bae完成签到 ,获得积分10
12秒前
tiger发布了新的文献求助10
13秒前
儒雅的凌文完成签到,获得积分20
13秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118440
求助须知:如何正确求助?哪些是违规求助? 4324348
关于积分的说明 13471847
捐赠科研通 4157359
什么是DOI,文献DOI怎么找? 2278392
邀请新用户注册赠送积分活动 1280168
关于科研通互助平台的介绍 1218879