High Dimensional Statistical Estimation Under Uniformly Dithered One-Bit Quantization

抖动 量化(信号处理) 数学 算法 估计员 高斯分布 压缩传感 协方差矩阵 应用数学 数学优化 计算机科学 统计 噪声整形 量子力学 计算机视觉 物理
作者
Junren Chen,Chenglong Wang,Michael K. Ng,Di Wang
出处
期刊:IEEE Transactions on Information Theory [Institute of Electrical and Electronics Engineers]
卷期号:69 (8): 5151-5187 被引量:17
标识
DOI:10.1109/tit.2023.3266271
摘要

In this paper, we propose a uniformly dithered 1-bit quantization scheme for high-dimensional statistical estimation. The scheme contains truncation, dithering, and quantization as typical steps. As canonical examples, the quantization scheme is applied to the estimation problems of sparse covariance matrix estimation, sparse linear regression (i.e., compressed sensing), and matrix completion. We study both sub-Gaussian and heavy-tailed regimes, where the underlying distribution of heavy-tailed data is assumed to have bounded moments of some order. We propose new estimators based on 1-bit quantized data. In sub-Gaussian regime, our estimators achieve minimax rates up to logarithmic factors, indicating that our quantization scheme costs very little. In heavy-tailed regime, while the rates of our estimators become essentially slower, these results are either the first ones in an 1-bit quantized and heavy-tailed setting, or already improve on existing comparable results from some respect. Under the observations in our setting, the rates are almost tight in compressed sensing and matrix completion. Our 1-bit compressed sensing results feature general sensing vector that is sub-Gaussian or even heavy-tailed. We also first investigate a novel setting where both the covariate and response are quantized. In addition, our approach to 1-bit matrix completion does not rely on likelihood and represents the first method robust to pre-quantization noise with unknown distribution. Experimental results on synthetic data are presented to support our theoretical analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
黔北胡歌完成签到,获得积分10
刚刚
pancake发布了新的文献求助30
1秒前
传奇3应助比尔盖蛋采纳,获得20
1秒前
2秒前
酷波er应助Huy_rin采纳,获得10
2秒前
Janiuh发布了新的文献求助10
2秒前
santaa1发布了新的文献求助10
2秒前
外向代柔完成签到,获得积分10
2秒前
2秒前
美好的曼凡完成签到,获得积分20
2秒前
翟老师完成签到,获得积分10
2秒前
黔北胡歌发布了新的文献求助10
3秒前
3秒前
川荣李奈发布了新的文献求助10
3秒前
4秒前
4秒前
wangwei82010完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
JamesPei应助XX采纳,获得10
5秒前
5秒前
李爱国应助李思洋采纳,获得10
6秒前
梦璃完成签到 ,获得积分10
7秒前
gankLei完成签到,获得积分10
7秒前
7秒前
zmr123发布了新的文献求助10
8秒前
ShanYexia发布了新的文献求助10
9秒前
erdongsir发布了新的文献求助10
9秒前
隐形曼青应助tt采纳,获得10
9秒前
倩Q发布了新的文献求助10
9秒前
9秒前
小乔同学发布了新的文献求助10
10秒前
华仔应助WWW=WWW采纳,获得10
10秒前
10秒前
11秒前
11秒前
Huy_rin完成签到,获得积分10
11秒前
11秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648297
求助须知:如何正确求助?哪些是违规求助? 4775251
关于积分的说明 15043616
捐赠科研通 4807292
什么是DOI,文献DOI怎么找? 2570677
邀请新用户注册赠送积分活动 1527431
关于科研通互助平台的介绍 1486437