Emerging Patterns of Microbial Functional Traits

生物 生态学 特质 微生物生态学 有机体 生态系统 生物地球化学循环 功能生态学 微生物种群生物学 环境变化 气候变化 计算机科学 遗传学 古生物学 程序设计语言 细菌
作者
Yunfeng Yang
出处
期刊:Trends in Microbiology [Elsevier BV]
卷期号:29 (10): 874-882 被引量:60
标识
DOI:10.1016/j.tim.2021.04.004
摘要

To understand the cause of microbial community dynamics and ecosystem consequences, scientists must analyze the patterns of microbial functional traits under various environmental conditions and associate functional traits with ecosystem processes. Challenges in cultivation and trait measurement, lack of robust definition of microbial species, and ecological incoherence of the microbial world have disallowed the direct application of trait concepts and tools developed for macro-organisms. In addition to serving as next-generation biomonitoring tools for assessing environmental safety and health risks, microbial functional traits could be used to explain biogeochemical cycling and improve ecosystem modeling. More research programs are needed for generating a knowledge base of functional traits, a critical step for environmental biomonitoring and biogeochemical process modeling in a time of rapid global changes. Functional traits are measurable characteristics that affect an organism’s fitness under certain environmental conditions. The use of functional traits in microbial ecology holds great promise for improving our ability to develop biogeochemical models and predict ecosystem responses to global changes. Notably, functional traits could be decoupled from taxonomic relatedness, owing to horizontal gene transfer among microorganisms and adaptive evolution. In recent years, our knowledge about microbial functional traits has been substantially enhanced, thereby revealing the multitude of ecological processes in driving community assembly and dynamics. Here, I summarize the emerging patterns of how microbial functional traits respond to changing environments, which considerably differ from better-studied microbial taxonomy. I use niche and neutral theories to explain microbial functional traits. Finally, I highlight future challenges to analyze, elucidate, and utilize functional traits in microbial ecology. Functional traits are measurable characteristics that affect an organism’s fitness under certain environmental conditions. The use of functional traits in microbial ecology holds great promise for improving our ability to develop biogeochemical models and predict ecosystem responses to global changes. Notably, functional traits could be decoupled from taxonomic relatedness, owing to horizontal gene transfer among microorganisms and adaptive evolution. In recent years, our knowledge about microbial functional traits has been substantially enhanced, thereby revealing the multitude of ecological processes in driving community assembly and dynamics. Here, I summarize the emerging patterns of how microbial functional traits respond to changing environments, which considerably differ from better-studied microbial taxonomy. I use niche and neutral theories to explain microbial functional traits. Finally, I highlight future challenges to analyze, elucidate, and utilize functional traits in microbial ecology. a nonrandom mechanism in ecology that affects the biological community's patterns and behaviors [57.Stegen J.C. et al.Quantifying community assembly processes and identifying features that impose them.ISME J. 2013; 7: 2069-2079Crossref PubMed Scopus (580) Google Scholar]. In other words, a deterministic process is niche-based. Therefore, patterns and behaviors can be predicted by abiotic and biotic environmental factors. the phenomenon that members of a taxon do not share the same life strategies or functional traits with other members of the same taxon [18.Jaspers E. Overmann J. Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies.Appl. Environ. Microbiol. 2004; 70: 4831-4839Crossref PubMed Scopus (236) Google Scholar,19.Philippot L. et al.The ecological coherence of high bacterial taxonomic ranks.Nat. Rev. Microbiol. 2010; 8: 523-529Crossref PubMed Scopus (382) Google Scholar]. physical, chemical, and biological actions or events occurring in an ecosystem. the total abundance of a functional trait [2.Violle C. et al.Let the concept of trait be functional!.Oikos. 2007; 116: 882-892Crossref Scopus (2483) Google Scholar]. Relative functional abundance can be calculated from amplicon or metagenome sequencing data, while absolute functional abundance can be calculated by incorporating microbial biomass information. the proportions of a functional trait in individual organisms relative to the total population possessing the functional trait [2.Violle C. et al.Let the concept of trait be functional!.Oikos. 2007; 116: 882-892Crossref Scopus (2483) Google Scholar]. Functional composition is generally expressed as a percentage, so that all components add up to 100%. It is a guild or community-level variable. a community-level variable to indicate the degree of functional dissimilarity in trait values within a community, which is also termed as trait range or functional β-diversity. It can also be expressed as the number of functional groups, which takes into account both the number of functional groups and trait values within a functional group. Functional divergence emphasizes the presence of various functional traits attributed to ecological differences between species, which leads to complete utilization of resources, making it informative for ecosystem processes [7.de Bello F. et al.Towards an assessment of multiple ecosystem processes and services via functional traits.Biodivers. Conserv. 2010; 19: 2873-2893Crossref Scopus (600) Google Scholar]. the variability among functional traits. It includes functional α-diversity, which is calculated by either the richness of functional trait or Shannon and Simpson indices when taking account of trait abundance. It also includes β-diversity, reflecting functional divergence among its members [7.de Bello F. et al.Towards an assessment of multiple ecosystem processes and services via functional traits.Biodivers. Conserv. 2010; 19: 2873-2893Crossref Scopus (600) Google Scholar]. the ability of multiple, distinct organisms to perform a shared metabolic function [38.Allison S.D. Martiny J.B. Resistance, resilience, and redundancy in microbial communities.Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 11512-11519Crossref PubMed Scopus (1525) Google Scholar]. Consequently, functional redundancy is often linked to functional stability against changing environments. the degree of change in an organism's or community’s functionality as a result of an environmental disturbance that may or may not be permanent over time [37.Doolittle W.F. Inkpen S.A. Processes and patterns of interaction as units of selection: An introduction to ITSNTS thinking.Proc. Natl. Acad. Sci. U. S. A. 2018; 115: 4006-4014Crossref PubMed Scopus (38) Google Scholar]. the ability to return to the equilibrium state after a disturbance or not experience large changes in ecosystem functions across time [21.Talbot J.M. et al.Endemism and functional convergence across the North American soil mycobiome.Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 6341-6346Crossref PubMed Scopus (335) Google Scholar,36.Goss-Souza D. et al.Amazon forest-to-agriculture conversion alters rhizosphere microbiome composition while functions are kept.FEMS Microbiol. Ecol. 2019; 95fiz009Crossref PubMed Scopus (16) Google Scholar,37.Doolittle W.F. Inkpen S.A. Processes and patterns of interaction as units of selection: An introduction to ITSNTS thinking.Proc. Natl. Acad. Sci. U. S. A. 2018; 115: 4006-4014Crossref PubMed Scopus (38) Google Scholar]. Therefore, functional stability includes both functional resilience and resistance. any heritable characteristic that affects an organism's fitness, performance, or metabolic function [2.Violle C. et al.Let the concept of trait be functional!.Oikos. 2007; 116: 882-892Crossref Scopus (2483) Google Scholar]. acquisition of a new gene by DNA transfer from another organism [19.Philippot L. et al.The ecological coherence of high bacterial taxonomic ranks.Nat. Rev. Microbiol. 2010; 8: 523-529Crossref PubMed Scopus (382) Google Scholar]. the variability among living microorganisms. Microbial diversity includes taxonomic, phylogenetic, and functional diversity. Microbial diversity also includes α-, β-, and γ-diversity. Using functional traits as an example, microbial α-diversity is the number of functional traits (i.e., trait richness) in a microbial community, with or without weighted trait abundance. Microbial β-diversity is the comparison between two communities, measured as the difference between community composition. Microbial β-diversity is often measured on a normalized scale from zero to one. A high β-diversity index indicates a low level of similarity, while a low β-diversity index shows a high level of similarity. Microbial γ-diversity is a measure of the overall diversity for different ecosystems within a region, also known as geographic-scale diversity. a space with a particular set of resources and environmental conditions that individual organisms exploit [19.Philippot L. et al.The ecological coherence of high bacterial taxonomic ranks.Nat. Rev. Microbiol. 2010; 8: 523-529Crossref PubMed Scopus (382) Google Scholar]. a random event that can affect population and community dynamics in microbial ecology, like the flip of a coin. Those events include reproduction, mortality, dispersal, and disturbance involving random numbers in modeling [52.Hubbell S.P. Neutral theory and the evolution of ecological equivalence.Ecology. 2006; 87: 1387-1398Crossref PubMed Scopus (391) Google Scholar].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
372925abc完成签到,获得积分10
刚刚
从容映易完成签到 ,获得积分10
1秒前
2秒前
阔达的秀发完成签到,获得积分10
3秒前
丘比特应助Vesper采纳,获得10
3秒前
斜阳正浓发布了新的文献求助10
4秒前
Yasmine完成签到 ,获得积分10
4秒前
细心灭龙完成签到,获得积分10
8秒前
大力的含卉完成签到,获得积分10
9秒前
9秒前
桐桐应助闪闪雅阳采纳,获得10
9秒前
风花雪月完成签到,获得积分10
9秒前
10秒前
雪白的面包完成签到 ,获得积分10
11秒前
13秒前
义气如萱发布了新的文献求助10
13秒前
栗子完成签到,获得积分10
16秒前
华仔应助凤梨配汉堡采纳,获得10
16秒前
18秒前
18秒前
研友_VZG7GZ应助静默采纳,获得10
21秒前
纯真采蓝完成签到,获得积分10
21秒前
闪闪雅阳发布了新的文献求助10
22秒前
诚心寄凡发布了新的文献求助10
22秒前
LeeSkywalker完成签到,获得积分10
26秒前
可爱的函函应助QQQ采纳,获得10
27秒前
Owen应助完美梨愁采纳,获得10
28秒前
共享精神应助凤梨配汉堡采纳,获得10
31秒前
qyhl完成签到 ,获得积分10
33秒前
不倦应助活泼寻梅采纳,获得10
34秒前
rye227应助柴脱采纳,获得10
35秒前
36秒前
37秒前
复杂瑛完成签到,获得积分10
37秒前
zj发布了新的文献求助30
37秒前
所所应助spw采纳,获得10
40秒前
展七发布了新的文献求助10
41秒前
42秒前
42秒前
舒适的尔容完成签到,获得积分10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778270
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216436
捐赠科研通 3039122
什么是DOI,文献DOI怎么找? 1667788
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758366